Atjaunināt sīkdatņu piekrišanu

E-grāmata: Multiphase Flows with Droplets and Particles, Third Edition 3rd edition [Taylor & Francis e-book]

(Martin Luther University, Germany), (University of Magdeburg, Germany), (Texas Christian University, USA)
  • Formāts: 454 pages, 20 Tables, black and white; 78 Line drawings, black and white; 118 Halftones, black and white; 196 Illustrations, black and white
  • Izdošanas datums: 30-Dec-2022
  • Izdevniecība: CRC Press
  • ISBN-13: 9781003089278
  • Taylor & Francis e-book
  • Cena: 235,68 €*
  • * this price gives unlimited concurrent access for unlimited time
  • Standarta cena: 336,68 €
  • Ietaupiet 30%
  • Formāts: 454 pages, 20 Tables, black and white; 78 Line drawings, black and white; 118 Halftones, black and white; 196 Illustrations, black and white
  • Izdošanas datums: 30-Dec-2022
  • Izdevniecība: CRC Press
  • ISBN-13: 9781003089278
Multiphase Flows with Droplets and Particles provides an organized, pedagogical study of multiphase flows with particles and droplets. This revised edition presents new information on particle interactions, particle collisions, thermophoresis and Brownian movement, computational techniques and codes, and the treatment of irregularly shaped particles. An entire chapter is devoted to the flow of nanoparticles and applications of nanofluids.

Features











Discusses the modelling and analysis of nanoparticles.





Covers all fundamental aspects of particle and droplet flows.





Includes heat and mass transfer processes.





Features new and updated sections throughout the text.





Includes chapter exercises and a Solutions Manual for adopting instructors.

Designed to complement a graduate course in multiphase flows, the book can also serve as a supplement in short courses for engineers or as a stand-alone reference for engineers and scientists who work in this area.
Nomenclature xiii
Foreword xix
About the Authors xxi
Acknowledgments xxiii
Chapter 1 Introduction
1(24)
1.1 Industrial Applications
3(7)
1.1.1 Spray Drying
3(2)
1.1.2 Materials Transport Systems
5(1)
1.1.2.1 Pneumatic Transport
5(1)
1.1.3 Slurry Transport
6(1)
1.1.4 Manufacturing and Material Processing
7(1)
1.1.4.1 Spray Forming
7(1)
1.1.4.2 Plasma Spray Coating
8(1)
1.1.4.3 Abrasive Water-Jet Cutting
8(1)
1.1.4.4 Synthesis of Nanophase Materials
9(1)
1.2 Energy Conversion and Propulsion
10(2)
1.2.1 Pulverized-Coal-Fired Furnaces
10(1)
1.2.2 Fluidized Beds
10(2)
1.2.3 Solid Propellant Rockets
12(1)
1.3 Environmental Applications
12(5)
1.3.1 Pollution Control
12(1)
1.3.1.1 Cyclone Separators
12(2)
1.3.1.2 Electrostatic Precipitators
14(2)
1.3.1.3 Scrubbers
16(1)
1.3.2 Fire Suppression and Control
16(1)
1.4 Bio-Medical Applications
17(4)
1.4.1 Dry Powder Inhalers
17(3)
1.4.2 Airway Deposition
20(1)
1.5 Summary and Objectives of This Book
21(4)
References
22(3)
Chapter 2 Properties of Dispersed Phase Flows
25(28)
2.1 The Continuum Hypothesis
25(3)
2.2 Density and Volume Fraction of Dispersed Flows
28(3)
2.3 Inter-Particle Distance--Dilute and Dense Flows
31(2)
2.4 Response Times, the Stokes Number, Collisions
33(6)
2.4.1 The Stokes Number
35(1)
2.4.2 Dilute Flows and Dense Flows
36(3)
2.5 Thermodynamic and Transport Properties
39(4)
2.6 Phase Interactions--Coupling
43(10)
2.6.1 Mass Coupling
45(1)
2.6.2 Momentum Coupling
46(2)
2.6.3 Energy Coupling
48(1)
Summary
49(1)
Note
49(1)
References
50(1)
Problems
50(3)
Chapter 3 Distributions and Statistics of Particles and Droplets
53(26)
3.1 The "Size" of Particles
53(4)
3.1.1 Fractal Dimension
55(2)
3.2 Discrete Size Distributions
57(3)
3.2.1 Frequency Distribution
57(2)
3.2.2 Cumulative Distribution
59(1)
3.3 Continuous Size Distributions
60(1)
3.4 Statistical Parameters
61(3)
3.4.1 Mode, Mean, and Median
62(2)
3.4.2 Variance and Standard Deviation
64(1)
3.5 Analytical Size Distributions
64(15)
3.5.1 Log-Normal Distribution
64(4)
3.5.2 Upper-Limit Log-Normal Distribution
68(1)
3.5.3 Square-Root Normal Distribution
68(1)
3.5.4 Rosin-Rammler Distribution
69(1)
3.5.5 Nukiyama-Tanasawa Distribution
70(1)
3.5.6 Log-Hyperbolic Distribution
70(2)
Summary
72(1)
References
72(1)
Problems
73(6)
Chapter 4 Forces on Single Particles and Drops
79(48)
4.1 Steady Drag on Spherical Particles and Drops
79(11)
4.1.1 Drag at Very Small Reynolds Numbers--Creeping or Stokes Flow
80(2)
4.1.2 Steady Drag on Spherical at Finite Reynolds Numbers
82(1)
4.1.2.1 The Flow Field Around the Solid Sphere
82(2)
4.1.2.2 Steady Drag on Solid Spheres
84(1)
4.1.2.3 Steady Drag on Liquid Spheres
85(3)
4.1.2.4 The Drag Factor
88(1)
4.1.3 Steady Drag with Velocity Slip at the Interface
88(2)
4.2 Compressibility and Rarefaction Effects
90(4)
4.2.1 The Cunningham Correction Factor
92(1)
4.2.2 Effects of the Mach Number
93(1)
4.3 Non-Spherical Particles
94(4)
4.3.1 Particles of Regular Shapes
94(1)
4.3.2 Particles with Irregular Shapes
95(2)
4.3.3 The Stokes or Hydrodynamic Diameter
97(1)
4.4 Effects of Flow Turbulence
98(1)
4.5 Blowing Effects
98(2)
4.6 Transverse (Lift) Forces Due to Particle Rotation and Flow Shear
100(3)
4.6.1 The Magnus Force
100(1)
4.6.2 The Saffman Force
101(2)
4.7 Effects of Solid Boundaries
103(3)
4.7.1 Effect of Enclosures
103(1)
4.7.2 Effect of Solid Boundaries
104(2)
4.8 Electrical Forces
106(3)
4.8.1 The Zeta Potential
107(1)
4.8.2 Electrophoresis
108(1)
4.9 Body Forces
109(3)
4.9.1 Terminal Velocity
109(2)
4.9.2 Centrifuging
111(1)
4.10 Brownian Movement
112(4)
4.10.1 Brownian Diffusion
112(2)
4.10.2 Thermophoresis
114(2)
4.11 Transient Drag-Added Mass and History (Basset) Force
116(3)
4.11.1 Creeping (Stokes) Flow (Rer >> 1)
116(2)
4.11.2 Flow at Finite Reynolds Numbers
118(1)
4.12 Summary
119(8)
References
119(5)
Problems
124(3)
Chapter 5 Particle-Fluid Interactions
127(36)
5.1 Fundamental Multiphase Flow Equations
127(2)
5.1.1 Mass Conservation Equation
128(1)
5.1.2 Linear Momentum Equation for the i-th Phase
128(1)
5.1.3 Angular Momentum Equation
128(1)
5.1.4 Energy Equation
128(1)
5.1.5 The Entropy Inequality
129(1)
5.1.6 Generalized Form of the Fundamental Equations
129(1)
5.2 Applications in Evaporation and Combustion--Mass Coupling
129(7)
5.2.1 Evaporation or Condensation
130(2)
5.2.2 The D-Square Law
132(1)
5.2.3 Mass Transfer from Slurry Droplets
132(2)
5.2.4 Combustion
134(2)
5.3 Linear Momentum Interactions
136(1)
5.3.1 Momentum Interactions with Groups of Particles
137(1)
5.4 Angular Momentum Interactions
137(3)
5.4.1 Transient Rotation
139(1)
5.5 Energy Interactions--Heat Transfer
140(12)
5.5.1 Heat-Mass Transfer Similarity
140(1)
5.5.2 Steady Heat Transfer from Spheres
141(1)
5.5.2.1 Solid Spheres
141(1)
5.5.2.2 Viscous Spheres
142(1)
5.5.2.3 Mixed Convection
143(1)
5.5.2.4 Velocity Slip and Temperature Difference (Temperature Slip)
144(1)
5.5.2.5 Blowing Effects
145(1)
5.5.2.6 Effects of Rotation
145(1)
5.5.2.7 Effects of Flow Turbulence
146(1)
5.5.3 Radiation
147(1)
5.5.4 Dielectric Heating
148(1)
5.5.5 Transient Heat Transfer
149(2)
5.5.6 Energy Interactions with Groups of Particles
151(1)
5.6 Turbulence Modulation by Particles
152(11)
5.6.1 Experimental Studies
152(2)
5.6.2 Turbulence Modulation Models
154(1)
References
155(2)
Problems
157(6)
Chapter 6 Particle-Particle Interactions
163(42)
6.1 Binary Hard-Sphere Particle Collisions
164(11)
6.1.1 Binary Collision Detection
164(3)
6.1.2 Impact Efficiency
167(3)
6.1.3 Particle Velocity Change
170(3)
6.1.4 Physical Effects of Inter-Particle Collisions
173(2)
6.2 Soft-Sphere Particle Collision/Contact
175(11)
6.2.1 Elastic Deformation
176(2)
6.2.2 Dissipation in the Normal Direction
178(1)
6.2.3 Rotation
179(3)
6.2.4 Adhesion
182(1)
6.2.5 Dissipation in the Tangential Direction
182(1)
6.2.6 Particle Coordinate Reference Frame
183(2)
6.2.7 Integration of the Equations of Motion
185(1)
6.3 Agglomeration and Flocculation Modelling
186(19)
6.3.1 Characteristics of Agglomerates
188(4)
6.3.2 Models of the Agglomeration Process
192(7)
References
199(6)
Chapter 7 Particle-Wall Interactions
205(34)
7.1 Momentum and Energy Exchanges
206(5)
7.2 Wall Roughness Effects and Irregular Bouncing
211(8)
7.2.1 Modelling Approaches for Irregular Bouncing
212(2)
7.2.2 Wall Roughness Normal PDF Model
214(5)
7.3 Particle Deposition and Wall Adhesion
219(5)
7.4 Wall Erosion by Particle Impact
224(15)
7.4.1 The Finnie Model
227(1)
7.4.2 The Neilson and Gilchrist Model
228(1)
7.4.3 The Chen Model
228(1)
7.4.4 The Zhang Model
229(1)
7.4.5 The Oka et al. Model
229(5)
References
234(5)
Chapter 8 Numerical Methods and Modelling Approaches
239(100)
8.1 Summary of Numerical Methods for Single-Phase Flows
239(1)
8.2 Hierarchy of Numerical Methods for Multiphase Flows
240(5)
8.3 Particle-Scale Simulation Methods
245(22)
8.3.1 Summary Resolved Rigid Particles
245(3)
8.3.2 Lattice-Boltzmann Method
248(3)
8.3.2.1 Treatment of Solid-Fluid Boundaries
251(2)
8.3.2.2 Description of the Particle Motion
253(2)
8.3.2.3 Moving Solid-Fluid Boundaries
255(1)
8.3.2.4 Solid Boundaries in Close Contact
256(1)
8.3.2.5 Examples of LBM Applications
257(5)
8.3.3 Immersed Boundary Methods
262(1)
8.3.3.1 Fundamentals of the Immersed Boundary Methods
262(4)
8.3.3.2 Applications of the Immersed Boundary Methods
266(1)
8.4 Point-Particle DNS
267(11)
8.4.1 Examples of Point-Particle DNS
270(8)
8.5 Point-Particle LES
278(5)
8.5.1 Examples of a Point-Particle LES
281(2)
8.6 Euler/Euler or Multi-Fluid Approach
283(11)
8.6.1 Volume Averaging Over an Indicator Function
283(2)
8.6.2 Averaging Over an Ensemble of Particles
285(3)
8.6.3 Probability Density Function
288(1)
8.6.4 The Boltzmann Equation
289(1)
8.6.5 The Eulerian-Eulerian Governing Equations
290(2)
8.6.6 Mixture Models
292(2)
8.7 Hybrid Euler-Lagrange Approaches
294(22)
8.7.1 RANS Continuous-Phase Equations
296(2)
8.7.2 Particle Tracking Concepts
298(2)
8.7.3 Generation of Fluid Turbulent Velocities
300(3)
8.7.4 Point-Mass Coupling Approaches
303(4)
8.7.5 Mesh Size Requirements in Two-Way Coupled Euler-Lagrange Simulations
307(4)
8.7.6 Example Euler-Lagrange Simulations: Pneumatic Conveying
311(5)
8.8 Applications of Numerical Methods to Fluidized Bed Reactors
316(23)
8.8.1 Eulerian-Eulerian Prediction of Fluidized Beds
318(1)
Frictional Stress
318(1)
Solving the Eulerian-Eulerian Equations
319(1)
Boundary Conditions
319(1)
Initial Conditions
320(1)
Example Simulations
320(2)
Results: Slugging Fluidized Beds
322(1)
Results: Bubbling Fluidized Beds
322(1)
Results: Bubble Injection
322(1)
8.8.2 Eulerian-Lagrangian Predictions for Fluidized Beds
322(3)
CFD-DEM Model
325(1)
8.8.3 Example of Simulations
326(1)
References
327(12)
Chapter 9 Experimental Methods
339(92)
9.1 Light Scattering Fundamentals
343(7)
9.2 Sampling and Offline Methods
350(14)
9.2.1 Imaging Methods, Microscopy
351(1)
9.2.2 Sieving Analysis
352(4)
9.2.3 Sedimentation Methods
356(1)
9.2.4 Cascade Impactor
356(3)
9.2.5 Electric Sensing Zone Method (Coulter principle)
359(2)
9.2.6 Laser-Diffraction Method
361(3)
9.3 Online Integral Methods
364(5)
9.3.1 Light Attenuation
364(2)
9.3.2 Cross-Correlation Method
366(3)
9.4 Local Measurement Techniques
369(39)
9.4.1 Isokinetic Sampling
369(4)
9.4.2 Optical Fiber Probes
373(2)
9.4.3 Light Scattering Instruments
375(4)
9.4.4 Laser-Doppler Anemometry
379(12)
9.4.5 Phase-Doppler Anemometry
391(17)
9.5 Imaging Techniques and PTV/PIV
408(12)
9.6 Summary
420(11)
Note
422(1)
References
422(5)
Problems
427(4)
Chapter 10 Nanoparticles and Nanofluids
431(15)
10.1 Characteristics of Nanoparticles and Nanoflu ids
431(1)
10.2 Effective Transport Properties of Nanofluids
432(1)
10.3 Effective Viscosity
433(2)
10.3.1 Experimental Data and Correlations
433(1)
10.3.2 Non-Newtonian Behavior
434(1)
10.4 Effective Thermal Conductivity
435(3)
10.4.1 Experimental Studies
435(2)
10.4.2 Analytical Expressions
437(1)
10.4.3 Mechanisms of Thermal Conductivity Enhancement
437(1)
10.5 Forced Convection
438(2)
10.6 Natural Convection
440(1)
10.7 Boiling
441(2)
10.7.1 Pool Boiling
441(1)
10.7.2 Convective Boiling
442(1)
10.7.3 Critical Heat Flux
443(1)
10.8 Effective Diffusivity and Mass Transfer
443(2)
10.8.1 Analytical Results
444(1)
10.8.2 Experimental Methods and Results
444(1)
10.9 Specific Heat Capacity
445(1)
Summary
446(1)
References 446(5)
Index 451