Atjaunināt sīkdatņu piekrišanu

E-grāmata: Multiphysics Simulation by Design for Electrical Machines, Power Electronics and Drives

Citas grāmatas par šo tēmu:
  • Formāts - PDF+DRM
  • Cena: 145,08 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Bibliotēkām
Citas grāmatas par šo tēmu:

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

Presents applied theory and advanced simulation techniques for electric machines and drives

This book combines the knowledge of experts from both academia and the software industry to present theories of multiphysics simulation by design for electrical machines, power electronics, and drives. The comprehensive design approach described within supports new applications required by technologies sustaining high drive efficiency. The highlighted framework considers the electric machine at the heart of the entire electric drive. The book also emphasizes the simulation by design concept—a concept that frames the entire highlighted design methodology, which is described and illustrated by various advanced simulation technologies.

Multiphysics Simulation by Design for Electrical Machines, Power Electronics and Drives begins with the basics of electrical machine design and manufacturing tolerances. It also discusses fundamental aspects of the state of the art design process and includes examples from industrial practice. It explains FEM-based analysis techniques for electrical machine design—providing details on how it can be employed in ANSYS Maxwell software. In addition, the book covers advanced magnetic material modeling capabilities employed in numerical computation; thermal analysis; automated optimization for electric machines; and power electronics and drive systems. This valuable resource:

  • Delivers the multi-physics know-how based on practical electric machine design methodologies
  • Provides an extensive overview of electric machine design optimization and its integration with power electronics and drives
  • Incorporates case studies from industrial practice and research and development projects

Multiphysics Simulation by Design for Electrical Machines, Power Electronics and Drives is an incredibly helpful book for design engineers, application and system engineers, and technical professionals. It will also benefit graduate engineering students with a strong interest in electric machines and drives.

Preface vii
Acknowledgments xv
Chapter 1 Basics of Electrical Machines Design and Manufacturing Tolerances
1(44)
Marius Rosu
Mircea Popescu
Dan M. Ionel
1.1 Introduction
1(2)
1.2 Generic Design Flow
3(1)
1.3 Basic Design and How to Start
4(12)
1.4 Efficiency Map
16(3)
1.5 Thermal Constraints
19(3)
1.6 Robust Design and Manufacturing Tolerances
22(23)
References
42(3)
Chapter 2 Fem-Based Analysis Techniques For Electrical Machine Design
45(64)
Ping Zhou
Dingsheng Lin
2.1 T--Ω Formulation
45(11)
2.2 Field-Circuit Coupling
56(14)
2.3 Fast AC Steady-State Algorithm
70(12)
2.4 High Performance Computing--Time Domain Decomposition
82(11)
2.5 Reduced Order Modeling
93(16)
References
106(3)
Chapter 3 Magnetic Material Modeling
109(56)
Dingsheng Lin
Ping Zhou
3.1 Shape Preserving Interpolation of B--H Curves
109(6)
3.2 Nonlinear Anisotropic Model
115(10)
3.3 Dynamic Core Loss Analysis
125(12)
3.4 Vector Hysteresis Model
137(13)
3.5 Demagnetization of Permanent Magnets
150(15)
References
162(3)
Chapter 4 Thermal Problems in Electrical Machines
165(58)
Mircea Popescu
David Staton
4.1 Introduction
165(2)
4.2 Heat Extraction Through Conduction
167(3)
4.3 Heat Extraction Through Convection
170(16)
4.4 Heat Extraction Through Radiation
186(2)
4.5 Cooling Systems Summary
188(1)
4.6 Thermal Network Based on Lumped Parameters
188(4)
4.7 Analytical Thermal Network Analysis
192(1)
4.8 Thermal Analysis Using Finite Element Method
193(2)
4.9 Thermal Analysis Using Computational Fluid Dynamics
195(5)
4.10 Thermal Parameters Determination
200(2)
4.11 Losses in Brushless Permanent Magnet Machines
202(8)
4.12 Cooling Systems
210(4)
4.13 Cooling Examples
214(9)
References
218(5)
Chapter 5 Automated Optimization For Electric Machines
223(28)
Dan M. Ionel
Vandana Rallabandi
5.1 Introduction
223(1)
5.2 Formulating an Optimization Problem
224(2)
5.3 Optimization Methods
226(2)
5.4 Design of Experiments and Response Surface Methods
228(5)
5.5 Differential Evolution
233(1)
5.6 First Example: Optimization of an Ultra High Torque Density PM Motor for Formula E Racing Cars: Selection of Best Compromise Designs
234(4)
5.7 Second Example: Single Objective Optimization of a Range of Permanent Magnet Synchronous Machine (PMSMS) Rated Between 1 kW and 1 MW Derivation of Design Proportions and Recommendations
238(3)
5.8 Third Example: Two- and Three-Objective Function Optimization of a Synchronous Reluctance (SYNREL) and PM Assisted Synchronous Reluctance Motor
241(4)
5.9 Fourth Example: Multi-Objective Optimization of PM Machines Combining DOE and DE Methods
245(3)
5.10 Summary
248(3)
References
248(3)
Chapter 6 Power Electronics and Drive Systems
251(32)
Frede Blaabjerg
Francesco Iannuzzo
Lorenzo Ceccarelli
6.1 Introduction
251(2)
6.2 Power Electronic Devices
253(11)
6.3 Circuit-Level Simulation of Drive Systems
264(10)
6.4 Multiphysics Design Challenges
274(9)
References
281(2)
Index 283
Marius Rosu, PhD, is Lead Product Manager for the Electromechanical Product Line at Electronic Business Unit (EBU) of ANSYS Inc., USA.

Ping Zhou, PhD, FIEEE, is Director of Research and Development at Electronic Business Unit (EBU) of ANSYS Inc., USA.

Dingsheng Lin, PhD, is a Principal Research and Development Engineer at Electronic Business Unit (EBU) of ANSYS Inc., USA.

Dan Ionel, PhD, FIEEE, is Professor of Electrical Engineering and L. Stanley Pigman Chair in Power at University of Kentucky, Lexington, KY.

Mircea Popescu, PhD, FIEEE, is Head of Engineering of Motor Design Ltd., U.K., a company that develops software for the analysis and design of electrical machines.

Frede Blaabjerg, PhD, FIEEE, is a Professor in Power Electronics and Villum Investigator the Department of Energy Technology at Aalborg University, Denmark.

Vandana Rallabandi, PhD, is a Post-doctoral Researcher in the SPARK Laboratory, Electrical and Computer Engineering Department, University of Kentucky, Lexington, KY.

David Staton, PhD, is President and Founder of Motor Design Ltd, UK, a company that develops software for the analysis and design of electrical machines.