Atjaunināt sīkdatņu piekrišanu

Multiple Classifier Systems: 6th International Workshop, MCS 2005, Seaside, CA, USA, June 13-15, 2005, Proceedings 2005 ed. [Mīkstie vāki]

Edited by , Edited by , Edited by , Edited by
  • Formāts: Paperback / softback, 432 pages, height x width: 235x155 mm, weight: 1380 g, XII, 432 p., 1 Paperback / softback
  • Sērija : Image Processing, Computer Vision, Pattern Recognition, and Graphics 3541
  • Izdošanas datums: 01-Jun-2005
  • Izdevniecība: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • ISBN-10: 3540263063
  • ISBN-13: 9783540263067
Citas grāmatas par šo tēmu:
  • Mīkstie vāki
  • Cena: 46,91 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Standarta cena: 55,19 €
  • Ietaupiet 15%
  • Grāmatu piegādes laiks ir 3-4 nedēļas, ja grāmata ir uz vietas izdevniecības noliktavā. Ja izdevējam nepieciešams publicēt jaunu tirāžu, grāmatas piegāde var aizkavēties.
  • Daudzums:
  • Ielikt grozā
  • Piegādes laiks - 4-6 nedēļas
  • Pievienot vēlmju sarakstam
  • Formāts: Paperback / softback, 432 pages, height x width: 235x155 mm, weight: 1380 g, XII, 432 p., 1 Paperback / softback
  • Sērija : Image Processing, Computer Vision, Pattern Recognition, and Graphics 3541
  • Izdošanas datums: 01-Jun-2005
  • Izdevniecība: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • ISBN-10: 3540263063
  • ISBN-13: 9783540263067
Citas grāmatas par šo tēmu:
The belief that a committee of people make better decisions than any individual is widely held and appreciated. We also understand that, for this to be true, the members of the committee have to be simultaneously competent and comp- mentary. This intuitive notion holds true for committees of data sources (such as sensors) and models (such as classi ers). The substantial current research in the areas of data fusion and model fusion focuses on ensuring that the di - ent sources provide useful information but nevertheless complement one another to yield better results than any source would on its own. During the 1990s, a variety of schemes in classi er fusion, which is the focus of this workshop, were developed under many names in di erent scienti c communities such as machine learning, pattern recognition, neural networks, and statistics. The previous ?ve workshops on Multiple Classi er Systems (MCS) were themselves exercises in information fusion, with the goal of bringing the di erent scienti c commu- ties together, providing each other with di erent perspectives on this fascinating topic, and aiding cross-fertilization of ideas. These ?ve workshops achieved this goal, demonstrating signi? cant advances in the theory, algorithms, and appli- tions of multiple classi er systems. Followingits vepredecessorspublishedbySpringer,thisvolumecontainsthe proceedings of the 6th International Workshop on Multiple Classi er Systems (MCS2005)heldattheEmbassySuitesinSeaside,California,USA,June13-15, 2005. Forty-two papers were selected by the Scienti c Committee, and they were organized into the following sessions: Boosting, Combination Methods, Design of Ensembles, Performance Analysis, and Applications.
Future Directions
Semi-supervised Multiple Classifier Systems: Background and Research Directions
1(11)
Fabio Roli
Boosting
Boosting GMM and Its Two Applications
12(10)
Fei Wang
Changshui Zhang
Naijiang Lu
Boosting Soft-Margin SVM with Feature Selection for Pedestrian Detection
22(10)
Kenji Nishida
Takio Kurita
Observations on Boosting Feature Selection
32(10)
David B. Redpath
Katia Lebart
Boosting Multiple Classifiers Constructed by Hybrid Discriminant Analysis
42(11)
Qi Tian
Jie Yu
Thomas S. Huang
Combination Methods
Decoding Rules for Error Correcting Output Code Ensembles
53(11)
Raymond S. Smith
Terry Windeatt
A Probability Model for Combining Ranks
64(10)
Ofer Melnik
Yehuda Vardi
Cun-Hui Zhang
EER of Fixed and Trainable Fusion Classifiers: A Theoretical Study with Application to Biometric Authentication Tasks
74(12)
Norman Poh
Samy Bengio
Mixture of Gaussian Processes for Combining Multiple Modalities
86(11)
Ashish Kapoor
Hyungil Ahn
Rosalind W. Picard
Dynamic Classifier Integration Method
97(11)
Eunju Kim
Jaepil Ko
Recursive ECOC for Microarray Data Classification
108(10)
Elizabeth Tapia
Esteban Serra
Jose Carlos Gonzalez
Using Dempster-Shafer Theory in MCF Systems to Reject Samples
118(10)
Christian Thiel
Friedhelm Schwenker
Gunther Palm
Multiple Classifier Fusion Performance in Networked Stochastic Vector Quantisers
128(8)
Robin Patenall
David Windridge
Josef Kittler
On Deriving the Second-Stage Training Set for Trainable Combiners
136(11)
Pavel Paclik
Thomas C.W. Landgrebe
David M.J. Tax
Robert P. W. Duin
Using Independence Assumption to Improve Multimodal Biometric Fusion
147(9)
Sergey Tulyakov
Venu Govindaraju
Design Methods
Half-Against-Half Multi-class Support Vector Machines
156(9)
Hansheng Lei
Venu Govindaraju
Combining Feature Subsets in Feature Selection
165(11)
Marina Skurichina
Robert P. W. Duin
ACE: Adaptive Classifiers-Ensemble System for Concept-Drifting Environments
176(10)
Kyosuke Nishida
Koichiro Yamauchi
Takashi Omori
Using Decision Tree Models and Diversity Measures in the Selection of Ensemble Classification Models
186(10)
Mordechai Gal-Or
Jerrold H. May
William E. Spangler
Ensembles of Classifiers from Spatially Disjoint Data
196(10)
Robert E. Banfield
Lawrence O. Hall
Kevin W. Bowyer
W. Philip Kegelmeyer
Optimising Two-Stage Recognition Systems
206(10)
Thomas C. W. Landgrebe
Pavel Paclik
David M.J. Tax
Robert P. W. Duin
Design of Multiple Classifier Systems for Time Series Data
216(10)
Lei Chen
Mohamed S. Kamel
Ensemble Learning with Biased Classifiers: The Triskel Algorithm
226(10)
Andreas Heß
Rinat Khoussainov
Nicholas Kushmerick
Cluster-Based Cumulative Ensembles
236(10)
Hanan G. Ayad
Mohamed S. Kamel
Ensemble of SVMs for Incremental Learning
246(11)
Zeki Erdem
Robi Polikar
Fikret Gurgen
Nejat Yumusak
Performance Analysis
Design of a New Classifier Simulator
257(10)
Li-ying Yang
Zheng Qin
Evaluation of Diversity Measures for Binary Classifier Ensembles
267(11)
Anand Narasimhamurthy
Which Is the Best Multiclass SVM Method? An Empirical Study
278(8)
Kai-Bo Duan
S. Sathiya Keerthi
Over-Fitting in Ensembles of Neural Network Classifiers Within ECOC Frameworks
286(10)
Matthew Prior
Terry Windeatt
Between Two Extremes: Examining Decompositions of the Ensemble Objective Function
296(10)
Gavin Brown
Jeremy Wyatt
Ping Sun
Data Partitioning Evaluation Measures for Classifier Ensembles
306(10)
Rozita A. Dara
Masoud Makrehchi
Mohamed S. Kamel
Dynamics of Variance Reduction in Bagging and Other Techniques Based on Randomisation
316(10)
Giorgio Fumera
Fabio Roli
Alessandra Serrau
Ensemble Confidence Estimates Posterior Probability
326(10)
Michael Muhlbaier
Apostolos Topalis
Robi Polikar
Applications
Using Domain Knowledge in the Random Subspace Method: Application to the Classification of Biomedical Spectra
336(10)
Erinija Pranckeviciene
Richard Baumgartner
Ray Somorjai
An Abnormal ECG Beat Detection Approach for Long-Term Monitoring of Heart Patients Based on Hybrid Kernel Machine Ensemble
346(10)
Peng Li
Kap Luk Chan
Sheng Fu
S.M. Krishnan
Speaker Verification Using Adapted User-Dependent Multilevel Fusion
356(10)
Julian Fierrez-Aguilar
Daniel Garcia-Romero
Javier Ortega-Garcia
Joaquin Gonzalez-Rodriguez
Multi-modal Person Recognition for Vehicular Applications
366(10)
Hakan Erdogan
Aytul Ercil
Hazim K. Ekenel
S. Y. Bilgin
Ibrahim Eden
Meltem Kirisci
Huseyin Abut
Using an Ensemble of Classifiers to Audit a Production Classifier
376(11)
Piero Bonissone
Neil Eklund
Kai Goebel
Analysis and Modelling of Diversity Contribution to Ensemble-Based Texture Recognition Performance
387(10)
Samuel Chindaro
Konstantinos Sirlantzis
Michael Fairhurst
Combining Audio-Based and Video-Based Shot Classification Systems for News Videos Segmentation
397(10)
Massimo De Santo
Gennaro Percannella
Carlo Sansone
Mario Vento
Designing Multiple Classifier Systems for Face Recognition
407(10)
Nitesh V. Chawla
Kevin W. Bowyer
Exploiting Class Hierarchies for Knowledge Transfer in Hyperspectral Data
417(12)
Suju Rajan
Joydeep Ghosh
Author Index 429