Atjaunināt sīkdatņu piekrišanu

Multiple Forcing [Hardback]

  • Formāts: Hardback, 148 pages, height x width x depth: 236x157x17 mm, weight: 380 g
  • Sērija : Cambridge Tracts in Mathematics
  • Izdošanas datums: 22-Jan-1987
  • Izdevniecība: Cambridge University Press
  • ISBN-10: 0521266599
  • ISBN-13: 9780521266598
Citas grāmatas par šo tēmu:
  • Hardback
  • Cena: 152,25 €
  • Grāmatu piegādes laiks ir 3-4 nedēļas, ja grāmata ir uz vietas izdevniecības noliktavā. Ja izdevējam nepieciešams publicēt jaunu tirāžu, grāmatas piegāde var aizkavēties.
  • Daudzums:
  • Ielikt grozā
  • Piegādes laiks - 4-6 nedēļas
  • Pievienot vēlmju sarakstam
  • Formāts: Hardback, 148 pages, height x width x depth: 236x157x17 mm, weight: 380 g
  • Sērija : Cambridge Tracts in Mathematics
  • Izdošanas datums: 22-Jan-1987
  • Izdevniecība: Cambridge University Press
  • ISBN-10: 0521266599
  • ISBN-13: 9780521266598
Citas grāmatas par šo tēmu:
In this 1987 text Professor Jech gives a unified treatment of the various forcing methods used in set theory, and presents their important applications. Product forcing, iterated forcing and proper forcing have proved powerful tools when studying the foundations of mathematics, for instance in consistency proofs. The book is based on graduate courses though some results are also included, making the book attractive to set theorists and logicians.

Papildus informācija

In this 1987 text Professor Jech gives a unified treatment of the various forcing methods used in set theory, and presents their important applications.
Preface
Part I. Product Forcing:
1. Forcing and Boolean-valued models
2. Properties of the generic extension
3. Examples of generic reals
4. Product forcing
5. Examples of product forcing
6. The Lé
vy collapse
7. Product measure forcing
Part II. Iterated Forcing:
8. Two step iteration
9. Finite support iteration
10. Martin's axiom
11. Suslin's problem
12. Whitehead's problem
13. Kaplansky's conjecture
14. Countable support iteration
15. Borel's conjecture
Part III. Proper Forcing:
16. Stationary sets
17. Infinite games on complete Boolean algebras
18. Proper forcing
19. Examples of proper forcing
20. Iteration of proper forcing
21. The Proper Forcing Axiom
22. Martin's maximum
23. Well-founded iteration
Bibliography
Index of symbols
Subject index
Author index.