Atjaunināt sīkdatņu piekrišanu

E-grāmata: Multiplicative Analytic Geometry

  • Formāts: 248 pages
  • Izdošanas datums: 24-Nov-2022
  • Izdevniecība: Chapman & Hall/CRC
  • Valoda: eng
  • ISBN-13: 9781000720891
Citas grāmatas par šo tēmu:
  • Formāts - PDF+DRM
  • Cena: 115,20 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Bibliotēkām
  • Formāts: 248 pages
  • Izdošanas datums: 24-Nov-2022
  • Izdevniecība: Chapman & Hall/CRC
  • Valoda: eng
  • ISBN-13: 9781000720891
Citas grāmatas par šo tēmu:

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

"This book is devoted to multiplicative analytic geometry. The book is intended for senior undergraduate students and beginning graduate students of engineering and science courses & reflects some recent investigations in multiplicative analytic geometry. The multiplicative differential calculus has applications in biology, chemistry, finance"--

This book is devoted to multiplicative analytic geometry. The book is intended for senior undergraduate students and beginning graduate students of engineering and science courses & reflects some recent investigations in multiplicative analytic geometry. The multiplicative differential calculus has applications in biology, chemistry, finance.

This book is devoted to multiplicative analytic geometry. The book reflects recent investigations into the topic. The reader can use the main formulae for investigations of multiplicative differential equations, multiplicative integral equations and multiplicative geometry.

The authors summarize the most recent contributions in this area. The goal of the authors is to bring the most recent research on the topic to capable senior undergraduate students, beginning graduate students of engineering and science and researchers in a form to advance further study. The book contains eight chapters. The chapters in the book are pedagogically organized. Each chapter concludes with a section with practical problems.

Two operations, differentiation and integration, are basic in calculus and analysis. In fact, they are the infinitesimal versions of the subtraction and addition operations on numbers, respectively. In the period from 1967 till 1970, Michael Grossman and Robert Katz gave definitions of a new kind of derivative and integral, moving the roles of subtraction and addition to division and multiplication, and thus established a new calculus, called multiplicative calculus. Multiplicative calculus can especially be useful as a mathematical tool for economics and finance.

Multiplicative Analytic Geometry

builds upon multiplicative calculus and advances the theory to the topics of analytic and differential geometry.

1. The Field R*.
2. Multiplicative Plane Euclidean Geometry.
3.
Multiplicative Affine Transformations in the Multiplicative Euclidean Plane.
4. Finite Groups of Multiplicative Isometries of E?2.
5. Multiplicative
Geometry on the Multiplicative Sphere.
6. The Projective Multiplicative Plane
P?2.
7. The Multiplicative Distance Geometry on P?2.
8. The Hyperbolic
Multiplicative Plane.
Svetlin G. Georgiev (born 05 April 1974, Rouse, Bulgaria) is a mathematician who has worked in various areas of mathematics. He currently focuses on harmonic analysis, functional analysis, partial differential equations, ordinary differential equations, Clifford and quaternion analysis, integral equations and dynamic calculus on time scales.

Khaled Zennir was born in Skikda, Algeria, in 1982. He received his PhD in Mathematics in 2013 from Sidi Bel Abbčs University, Algeria (Assist. Professor). He obtained his highest diploma in Algeria (Habilitation, Mathematics) from Constantine University, Algeria, in May 2015 (Assoc. Professor). He is now Associate Professor at Qassim University, KSA. His research interests lie in nonlinear hyperbolic partial differential equations: global existence, blow-up and long time behavior.

Aissa Boukarou received his PhD in Mathematics in 2021 from Ghardaia University, Algeria (Assist. Professor). His research interests lie in partial differential equations, harmonic analysis, stochastic PDE and numerical analysis.