Atjaunināt sīkdatņu piekrišanu

E-grāmata: Multiplicative Number Theory I: Classical Theory

4.71/5 (14 ratings by Goodreads)
(University of Michigan, Ann Arbor), (Pennsylvania State University)
Citas grāmatas par šo tēmu:
  • Formāts - PDF+DRM
  • Cena: 89,21 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
Citas grāmatas par šo tēmu:

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

Prime numbers are the multiplicative building blocks of natural numbers. Understanding their overall influence and especially their distribution gives rise to central questions in mathematics and physics. In particular their finer distribution is closely connected with the Riemann hypothesis, the most important unsolved problem in the mathematical world. Assuming only subjects covered in a standard degree in mathematics, the authors comprehensively cover all the topics met in first courses on multiplicative number theory and the distribution of prime numbers. They bring their extensive and distinguished research expertise to bear in preparing the student for intelligent reading of the more advanced research literature. This 2006 text, which is based on courses taught successfully over many years at Michigan, Imperial College and Pennsylvania State, is enriched by comprehensive historical notes and references as well as over 500 exercises.

Recenzijas

'The text is very well written and accessible to students. On many occasions the authors explicitly describe basic methods known to everyone working in the field, but too often skipped in textbooks. This book may well become the standard introduction to analytic number theory.' Zentralblatt MATH

Papildus informācija

A 2006 text based on courses taught successfully over many years at Michigan, Imperial College and Pennsylvania State.
Preface xi
List of notation xiii
1 Dirichlet series: I
1
1.1 Generating functions and asymptotics
1
1.2 Analytic properties of Dirichlet series
11
1.3 Euler products and the zeta function
19
1.4 Notes
31
1.5 References
33
2 The elementary theory of arithmetic functions
35
2.1 Mean values
35
2.2 The prime number estimates of Chebyshev and of Mertens
46
2.3 Applications to arithmetic functions
54
2.4 The distribution of Ω(n) — ω(n)
65
2.5 Notes
68
2.6 References
71
3 Principles and first examples of sieve methods
76
3.1 Initiation
76
3.2 The Selberg lambda-squared method
82
3.3 Sifting an arithmetic progression
89
3.4 Twin primes
91
3.5 Notes
101
3.6 References
104
4 Primes in arithmetic progressions: I
108
4.1 Additive characters
108
4.2 Dirichlet characters
115
4.3 Dirichlet L-functions
120
4.4 Notes
133
4.5 References
134
5 Dirichlet series: II
137
5.1 The inverse Mellin transform
137
5.2 Summability
147
5.3 Notes
162
5.4 References
164
6 The Prime Number Theorem
168
6.1 A zero-free region
168
6.2 The Prime Number Theorem
179
6.3 Notes
192
6.4 References
195
7 Applications of the Prime Number Theorem
199
7.1 Numbers composed of small primes
199
7.2 Numbers composed of large primes
215
7.3 Primes in short intervals
220
7.4 Numbers composed of a prescribed number of primes
228
7.5 Notes
239
7.6 References
241
8 Further discussion of the Prime Number Theorem
244
8.1 Relations equivalent to the Prime Number Theorem
244
8.2 An elementary proof of the Prime Number Theorem
250
8.3 The Wiener-Ikehara Tauberian theorem
259
8.4 Beurling's generalized prime numbers
266
8.5 Notes
276
8.6 References
279
9 Primitive characters and Gauss sums
282
9.1 Primitive characters
282
9.2 Gauss sums
286
9.3 Quadratic characters
295
9.4 Incomplete character sums
306
9.5 Notes
321
9.6 References
323
10 Analytic properties of the zeta function and L-functions 326
10.1 Functional equations and analytic continuation
326
10.2 Products and sums over zeros
345
10.3 Notes
356
10.4 References
356
11 Primes in arithmetic progressions: II 358
11.1 A zero-free region
358
11.2 Exceptional zeros
367
11.3 The Prime Number Theorem for arithmetic progressions
377
11.4 Applications
386
11.5 Notes
391
11.6 References
393
12 Explicit formulae 397
12.1 Classical formulae
397
12.2 Weil's explicit formula
410
12.3 Notes
416
12.4 References
417
13 Conditional estimates 419
13.1 Estimates for primes
419
13.2 Estimates for the zeta function
433
13.3 Notes
447
13.4 References
449
14 Zeros 452
14.1 General distribution of the zeros
452
14.2 Zeros on the critical line
456
14.3 Notes
460
14.4 References
461
15 Oscillations of error terms 463
15.1 Applications of Landau's theorem
463
15.2 The error term in the Prime Number Theorem
475
15.3 Notes
482
15.4 References
484
APPENDICES
A The Riemann—Stieltjes integral
486
A.1 Notes
492
A.2 References
493
B Bernoulli numbers and the Euler—MacLaurin summation formula
495
B.1 Notes
513
B.2 References
517
C The gamma function
520
C.1 Notes
531
C.2 References
533
D Topics in harmonic analysis
535
D.1 Pointwise convergence of Fourier series
535
D.2 The Poisson summation formula
538
D.3 Notes
542
D.4 References
542
Name index 544
Subject index 550


Hugh Montgomery is a Professor of Mathematics at the University of Michigan. Robert Vaughan is a Professor of Mathematics at Pennsylvannia State University.