Atjaunināt sīkdatņu piekrišanu

Myopic Maculopathy Analysis: MICCAI Challenge MMAC 2023, Held in Conjunction with MICCAI 2023, Virtual Event, October 812, 2023, Proceedings 2024 ed. [Mīkstie vāki]

Edited by , Edited by , Edited by
  • Formāts: Paperback / softback, 121 pages, height x width: 235x155 mm, 31 Illustrations, color; 2 Illustrations, black and white; X, 121 p. 33 illus., 31 illus. in color., 1 Paperback / softback
  • Sērija : Lecture Notes in Computer Science 14563
  • Izdošanas datums: 29-Feb-2024
  • Izdevniecība: Springer International Publishing AG
  • ISBN-10: 3031548566
  • ISBN-13: 9783031548567
Citas grāmatas par šo tēmu:
  • Mīkstie vāki
  • Cena: 51,37 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Standarta cena: 60,44 €
  • Ietaupiet 15%
  • Grāmatu piegādes laiks ir 3-4 nedēļas, ja grāmata ir uz vietas izdevniecības noliktavā. Ja izdevējam nepieciešams publicēt jaunu tirāžu, grāmatas piegāde var aizkavēties.
  • Daudzums:
  • Ielikt grozā
  • Piegādes laiks - 4-6 nedēļas
  • Pievienot vēlmju sarakstam
  • Formāts: Paperback / softback, 121 pages, height x width: 235x155 mm, 31 Illustrations, color; 2 Illustrations, black and white; X, 121 p. 33 illus., 31 illus. in color., 1 Paperback / softback
  • Sērija : Lecture Notes in Computer Science 14563
  • Izdošanas datums: 29-Feb-2024
  • Izdevniecība: Springer International Publishing AG
  • ISBN-10: 3031548566
  • ISBN-13: 9783031548567
Citas grāmatas par šo tēmu:
This book constitutes the MICCAI Challenge, MMAC 2023, that held in Conjunction with MICCAI 2023, Vancouver, BC, Canada, which took place in October 2023. 





The 11 long papers included in this volume presents a wide range of state-of-the-art deep learning methods developed for the various tasks presented in the challenge.

Automated Detection of Myopic Maculopathy in MMAC 2023: Achievements in Classification, Segmentation, and Spherical Equivalent Prediction.- Swin-MMC: Swin-Based Model for Myopic Maculopathy Classification in Fundus Images.- Towards Label-efficient Deep Learning for Myopic Maculopathy Classification.- Ensemble Deep Learning Approaches for Myopic Maculopathy Plus Lesions Segmentation.- Beyond MobileNet: An improved MobileNet for Retinal Diseases.- Prediction of Spherical Equivalent With Vanilla ResNet.- Semi-supervised learning for Myopic Maculopathy Analysis.- A Clinically Guided Approach for Training Deep Neural Networks for Myopic Maculopathy Classification.- Classification of Myopic Maculopathy Images with Self-supervised Driven Multiple Instance Learning Network.- Self-supervised Learning and Data Diversity based Prediction of Spherical Equivalent.- Myopic Maculopathy Analysis using Multi-Task Learning and Pseudo Labeling.