Atjaunināt sīkdatņu piekrišanu

Néron Models 1990 ed. [Hardback]

Citas grāmatas par šo tēmu:
  • Hardback
  • Cena: 154,01 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Standarta cena: 181,19 €
  • Ietaupiet 15%
  • Grāmatu piegādes laiks ir 3-4 nedēļas, ja grāmata ir uz vietas izdevniecības noliktavā. Ja izdevējam nepieciešams publicēt jaunu tirāžu, grāmatas piegāde var aizkavēties.
  • Daudzums:
  • Ielikt grozā
  • Piegādes laiks - 4-6 nedēļas
  • Pievienot vēlmju sarakstam
Citas grāmatas par šo tēmu:
Néron models were invented by A. Néron in the early 1960s in order to study the integral structure of abelian varieties over number fields. Since then, arithmeticians and algebraic geometers have applied the theory of Néron models with great success. Quite recently, new developments in arithmetic algebraic geometry have prompted a desire to understand more about Néron models, and even to go back to the basics of their construction. The authors have taken this as their incentive to present a comprehensive treatment of Néron models. This volume of the renowned "Ergebnisse" series provides a detailed demonstration of the construction of Néron models from the point of view of Grothendieck's algebraic geometry. In the second part of the book the relationship between Néron models and the relative Picard functor in the case of Jacobian varieties is explained. The authors helpfully remind the reader of some important standard techniques of algebraic geometry. A special chapter surveys the theory of the Picard functor.
1. What Is a Néron Model?.- 1.1 Integral Points.- 1.2 Néron Models.- 1.3
The Local Case: Main Existence Theorem.- 1.4 The Global Case: Abelian
Varieties.- 1.5 Elliptic Curves.- 1.6 Nérons Original Article.-
2. Some
Background Material from Algebraic Geometry.- 2.1 Differential Forms.- 2.2
Smoothness.- 2.3 Henselian Rings.- 2.4 Flatness.- 2.5 S-Rational Maps.-
3.
The Smoothening Process.- 3.1 Statement of the Theorem.- 3.2 Dilatation.- 3.3
Nérons Measure for the Defect of Smoothness.- 3.4 Proof of the Theorem.- 3.5
Weak Néron Models.- 3.6 Algebraic Approximation of Formal Points.-
4.
Construction of Birational Group Laws.- 4.1 Group Schemes.- 4.2 Invariant
Differential Forms.- 4.3 R-Extensions of K-Group Laws.- 4.4 Rational Maps
into Group Schemes.-
5. From Birational Group Laws to Group Schemes.- 5.1
Statement of the Theorem.- 5.2 Strict Birational Group Laws.- 5.3 Proof of
the Theorem for a Strictly Henselian Base.-
6. Descent.- 6.1 The General
Problem.- 6.2 Some Standard Examples of Descent.- 6.3 The Theorem of the
Square.- 6.4 The Quasi-Projectivity of Torsors.- 6.5 The Descent of Torsors.-
6.6 Applications to Birational Group Laws.- 6.7 An Example of Non-Effective
Descent.-
7. Properties of Néron Models.- 7.1 A Criterion.- 7.2 Base Change
and Descent.- 7.3 Isogenies.- 7.4 Semi-Abelian Reduction.- 7.5 Exactness
Properties.- 7.6 Weil Restriction.-
8. The Picard Functor.- 8.1 Basics on the
Relative Picard Functor.- 8.2 Representability by a Scheme.- 8.3
Representability by an Algebraic Space.- 8.4 Properties.-
9. Jacobians of
Relative Curves.- 9.1 The Degree of Divisors.- 9.2 The Structure of
Jacobians.- 9.3 Construction via Birational Group Laws.- 9.4 Construction via
Algebraic Spaces.- 9.5 Picard Functor and Néron Models of Jacobians.- 9.6 The
Group ofConnected Components of a Néron Model.- 9.7 Rational Singularities.-
10. Néron Models of Not Necessarily Proper Algebraic Groups.- 10.1
Generalities.- 10.2 The Local Case.- 10.3 The Global Case.