Preface |
|
xi | |
1 High-κ dielectrics and device reliability |
|
1 | (34) |
|
|
1 | (1) |
|
1.2 Alloying HfO2 and ZrO2 |
|
|
2 | (2) |
|
1.3 Advanced ALD process: intermediate treatment |
|
|
4 | (1) |
|
|
5 | (1) |
|
1.5 Cyclic deposition and SPA plasma treatment to ALD Hf1-xZrxO2 |
|
|
5 | (8) |
|
1.5.1 Impact of Zr addition and SPA plasma on electrical properties |
|
|
8 | (1) |
|
1.5.2 Reliability study by constant voltage stress |
|
|
9 | (4) |
|
1.6 Al incorporation into HfO2 |
|
|
13 | (14) |
|
1.6.1 HfAlOx alloy structures |
|
|
14 | (1) |
|
1.6.2 Al2O3/HfO2 bilayer structures |
|
|
15 | (1) |
|
1.6.3 Problems with excess Al incorporation |
|
|
16 | (1) |
|
1.6.4 Extremely low Al incorporation in HfO2 |
|
|
17 | (10) |
|
|
27 | (1) |
|
|
28 | (1) |
|
|
28 | (7) |
2 High mobility n and p channels on gallium arsenide and silicon substrates using interfacial misfit dislocation arrays |
|
35 | (26) |
|
|
35 | (3) |
|
2.2 IMF versus pseudomorphic growth |
|
|
38 | (1) |
|
2.3 III-Sb on GaAs substrates |
|
|
39 | (3) |
|
2.4 III-Sb on silicon substrates |
|
|
42 | (9) |
|
2.4.1 Lattice mismatch solution: IMF layer |
|
|
43 | (4) |
|
2.4.2 Antiphase domains (APDs) |
|
|
47 | (3) |
|
2.4.3 Thermal expansion coefficient |
|
|
50 | (1) |
|
|
51 | (3) |
|
2.5.1 Substrate removal technique |
|
|
51 | (2) |
|
|
53 | (1) |
|
2.6 InAs and InGaSb channels on GaAs |
|
|
54 | (3) |
|
|
57 | (1) |
|
|
57 | (4) |
3 Anodic metal-insulator-metal (MIM) capacitors |
|
61 | (38) |
|
|
61 | (2) |
|
|
63 | (1) |
|
3.3 Anodization for nanoelectronics |
|
|
64 | (2) |
|
3.4 Anodic alumina MIM capacitors |
|
|
66 | (7) |
|
3.4.1 Fabrication process flow and crystalline properties |
|
|
67 | (1) |
|
3.4.2 Capacitance and voltage linearity |
|
|
67 | (3) |
|
3.4.3 Leakage characteristics and conduction mechanisms |
|
|
70 | (3) |
|
3.5 Anodic titania MIM capacitors |
|
|
73 | (6) |
|
3.5.1 Fabrication process, oxide formation, and crystallization |
|
|
74 | (2) |
|
3.5.2 Capacitance, voltage linearity, and leakage characteristics |
|
|
76 | (3) |
|
3.6 Anodic bilayer MIM capacitors |
|
|
79 | (5) |
|
3.6.1 Fabrication process flow |
|
|
80 | (1) |
|
3.6.2 Formation of bilayer and crystallization |
|
|
81 | (1) |
|
3.6.3 Capacitance, voltage linearity, and leakage characteristics |
|
|
82 | (2) |
|
3.7 Modeling of high-k MIM capacitors |
|
|
84 | (6) |
|
3.7.1 Modeling the voltage linearity |
|
|
85 | (1) |
|
|
86 | (2) |
|
|
88 | (1) |
|
|
89 | (1) |
|
|
90 | (2) |
|
|
92 | (7) |
4 Graphene transistorspresent and beyond |
|
99 | (40) |
|
|
99 | (1) |
|
4.2 Fabrication of graphene |
|
|
100 | (1) |
|
4.3 Properties of graphene |
|
|
101 | (13) |
|
|
101 | (2) |
|
|
103 | (1) |
|
4.3.3 Ambipolar field effect |
|
|
104 | (1) |
|
|
104 | (2) |
|
4.3.5 Scattering mechanism |
|
|
106 | (2) |
|
4.3.6 High-field transport |
|
|
108 | (1) |
|
|
109 | (1) |
|
4.3.8 Substrate and gate dielectrics |
|
|
110 | (2) |
|
|
112 | (1) |
|
4.3.10 Contact resistance |
|
|
112 | (1) |
|
4.3.11 Quantum capacitance |
|
|
113 | (1) |
|
4.4 Modeling and simulation |
|
|
114 | (5) |
|
4.4.1 Classical transport |
|
|
114 | (1) |
|
4.4.2 Semiclassical transport |
|
|
115 | (2) |
|
|
117 | (2) |
|
|
119 | (9) |
|
4.5.1 Graphene nanoribbon |
|
|
119 | (4) |
|
|
123 | (1) |
|
4.5.3 Device performance metrics |
|
|
123 | (5) |
|
|
128 | (1) |
|
|
128 | (11) |
5 Junction and doping-free transistors for future computing |
|
139 | (30) |
|
|
139 | (4) |
|
|
143 | (3) |
|
|
146 | (2) |
|
5.4 Junction and doping-free FET |
|
|
148 | (18) |
|
5.4.1 Junction and doping-free DG FET |
|
|
149 | (10) |
|
|
159 | (7) |
|
|
166 | (1) |
|
|
166 | (3) |
6 Nanoscale high-κ/metal-gate CMOS and FinFET based logic libraries |
|
169 | (44) |
|
|
169 | (3) |
|
6.2 Summary of this chapter |
|
|
172 | (2) |
|
|
174 | (4) |
|
6.3.1 HKMG device structure |
|
|
175 | (1) |
|
6.3.2 HKMG device modeling |
|
|
176 | (2) |
|
|
178 | (5) |
|
6.4.1 DG-FinFET device structure |
|
|
178 | (2) |
|
6.4.2 DG-FinFET device modeling |
|
|
180 | (3) |
|
6.5 The proposed methodology for logic library creation |
|
|
183 | (4) |
|
6.5.1 Sources of variation and nature of variability |
|
|
183 | (1) |
|
6.5.2 Statistical logic library characterization flow |
|
|
184 | (3) |
|
6.6 Power, leakage, and delay models for HKMG and DG-FinFET technology |
|
|
187 | (4) |
|
6.6.1 For HKMG-based technology |
|
|
187 | (3) |
|
6.6.2 For DG-FinFET-based technology |
|
|
190 | (1) |
|
6.7 Device level characterization of high-κ and FinFET |
|
|
191 | (13) |
|
|
191 | (8) |
|
|
199 | (5) |
|
6.8 PVT-aware logic level characterization |
|
|
204 | (1) |
|
6.9 Conclusion and directions for future research |
|
|
205 | (1) |
|
|
206 | (1) |
|
|
206 | (7) |
7 FinFET and reliability considerations of next-generation processors |
|
213 | (24) |
|
|
213 | (2) |
|
|
215 | (2) |
|
7.2.1 NBTI degradation mechanism |
|
|
215 | (1) |
|
7.2.2 Target GPU architecture |
|
|
216 | (1) |
|
7.3 Hybrid-device warp scheduler |
|
|
217 | (4) |
|
7.3.1 Opportunity for improvement |
|
|
217 | (2) |
|
7.3.2 Two-stage scheduling |
|
|
219 | (2) |
|
7.4 Hybrid-device sequential-access L2 cache |
|
|
221 | (1) |
|
|
222 | (2) |
|
|
224 | (8) |
|
|
224 | (4) |
|
|
228 | (4) |
|
|
232 | (1) |
|
|
232 | (1) |
|
7.7.2 Characterization of FinFET reliability |
|
|
233 | (1) |
|
7.7.3 Hybrid-device design |
|
|
233 | (1) |
|
|
233 | (1) |
|
|
234 | (3) |
8 Multiple-independent-gate nanowire transistors: from technology to advanced SoC design |
|
237 | (28) |
|
|
237 | (1) |
|
8.2 Multiple-independent-gate field-effect transistors |
|
|
238 | (9) |
|
8.2.1 TIG device overview and operation |
|
|
238 | (2) |
|
8.2.2 Device fabrication and electrical characterization |
|
|
240 | (3) |
|
8.2.3 Physical understanding |
|
|
243 | (2) |
|
8.2.4 Performance predictions |
|
|
245 | (2) |
|
8.3 Circuit design opportunities |
|
|
247 | (12) |
|
|
247 | (2) |
|
8.3.2 Compact data path design |
|
|
249 | (2) |
|
8.3.3 Advanced low-power techniques |
|
|
251 | (3) |
|
8.3.4 Memory opportunities |
|
|
254 | (3) |
|
8.3.5 Case study: implementation of a Polar code decoder with MIGFETs |
|
|
257 | (2) |
|
8.4 Summary and conclusions |
|
|
259 | (1) |
|
|
260 | (1) |
|
|
260 | (5) |
9 Exploration of carbon nanotubes for efficient power delivery |
|
265 | (22) |
|
|
265 | (1) |
|
|
266 | (3) |
|
9.3 CNTs for 2D power delivery network |
|
|
269 | (5) |
|
9.3.1 Branch analysis with CNTs |
|
|
270 | (4) |
|
9.4 CNTs for 3D power delivery network |
|
|
274 | (10) |
|
|
278 | (2) |
|
9.4.2 Voltage drop analysis on a 3D PDN |
|
|
280 | (4) |
|
|
284 | (1) |
|
|
284 | (1) |
|
|
284 | (3) |
10 Timing driven buffer insertion for carbon nanotube interconnects |
|
287 | (26) |
|
|
287 | (3) |
|
|
290 | (1) |
|
|
290 | (4) |
|
10.3.1 Resistance for CNT |
|
|
291 | (1) |
|
10.3.2 Capacitance for CNT |
|
|
292 | (1) |
|
10.3.3 Inductive impact is not important |
|
|
293 | (1) |
|
10.3.4 Elmore delay model for bundled SWCNTs interconnects |
|
|
294 | (1) |
|
10.4 Timing buffering for CNT interconnects |
|
|
294 | (5) |
|
|
294 | (2) |
|
|
296 | (1) |
|
|
296 | (1) |
|
|
297 | (1) |
|
|
298 | (1) |
|
|
299 | (3) |
|
10.6 Experimental results |
|
|
302 | (6) |
|
10.6.1 Experimental setup |
|
|
302 | (2) |
|
10.6.2 Experimental results |
|
|
304 | (4) |
|
|
308 | (1) |
|
|
309 | (1) |
|
|
309 | (4) |
11 Memristor modeling static, statistical, and stochastic methodologies |
|
313 | (24) |
|
|
313 | (2) |
|
|
315 | (1) |
|
11.2.1 TiO2 thin-film memristor |
|
|
315 | (1) |
|
11.2.2 Memristor static (bulk) model |
|
|
316 | (1) |
|
11.3 Statistical modeling |
|
|
316 | (8) |
|
11.3.1 Theoretical analysis |
|
|
316 | (3) |
|
11.3.2 3D device sample generation flow |
|
|
319 | (3) |
|
11.3.3 The impact of process variations |
|
|
322 | (2) |
|
|
324 | (5) |
|
11.4.1 ON and OFF static states |
|
|
324 | (1) |
|
11.4.2 Dynamic switching process |
|
|
324 | (3) |
|
11.4.3 Stochastic model verification |
|
|
327 | (2) |
|
11.5 Robustness of a neuromorphic system |
|
|
329 | (3) |
|
|
332 | (1) |
|
Acknowledgment and disclaimer |
|
|
332 | (1) |
|
|
332 | (5) |
12 Neuromorphic devices and circuits |
|
337 | (20) |
|
|
337 | (1) |
|
12.2 Emerging memory technologies |
|
|
338 | (2) |
|
12.3 Memristor and resistive memory |
|
|
340 | (7) |
|
|
341 | (1) |
|
12.3.2 Switching mechanisms |
|
|
342 | (3) |
|
|
345 | (1) |
|
12.3.4 Memristor integration |
|
|
346 | (1) |
|
12.4 Memristive synapse circuits: current-mode design |
|
|
347 | (4) |
|
|
347 | (2) |
|
12.4.2 Area and power consumption |
|
|
349 | (2) |
|
12.5 Application: image clustering |
|
|
351 | (4) |
|
12.5.1 Algorithm overview |
|
|
351 | (1) |
|
|
352 | (2) |
|
12.5.3 Clustering MNIST images |
|
|
354 | (1) |
|
|
355 | (1) |
|
|
355 | (1) |
|
|
355 | (2) |
Index |
|
357 | |