Atjaunināt sīkdatņu piekrišanu

Nano- And Micro-Mechanics of Polymer Blends and Composites [Hardback]

  • Formāts: Hardback, 604 pages, height x width x depth: 239x173x30 mm, weight: 1225 g, Figures; Tables, black and white; Illustrations, black and white
  • Izdošanas datums: 07-May-2009
  • Izdevniecība: Hanser Publications
  • ISBN-10: 1569904359
  • ISBN-13: 9781569904350
Citas grāmatas par šo tēmu:
  • Formāts: Hardback, 604 pages, height x width x depth: 239x173x30 mm, weight: 1225 g, Figures; Tables, black and white; Illustrations, black and white
  • Izdošanas datums: 07-May-2009
  • Izdevniecība: Hanser Publications
  • ISBN-10: 1569904359
  • ISBN-13: 9781569904350
Citas grāmatas par šo tēmu:
"The aim of this book is to give a state-of-art overview on aspects of micro- and nanomechanics of polymers, polymeric blends and composites"--Provided by publisher.

PART I POLYMERS
Chapter 1 Nano- and Micromechanics of Crystalline Polymers
A. Galeski, G. Regnier
1.1. Introduction
3
1.2. Tensile deformation of crystalline polymers
4
1.3. Cavitation in tensile deformation
4
1.4. Tensile deformation of polyethylene and polypropylene
8
1.5. Deformation micromechanisms in crystalline polymers
13
1.6. Molecular mechanisms at a nanometer scale
16
1.7. Dislocations in crystal plasticity
23
1.8. Generation of dislocations
25
1.9. Competition between crystal plasticity and cavitation
34
1.10. Micromechanics modeling in semicrystalline polymers
35
1.10.1. Microstructure and mechanical properties
35
1.10.2. The micromechanical models
36
1.10.3. Idealizing the microstructure of semicrystalline polymers
38
1.10.4. Elastic behavior prediction
40
1.11. Large deformations and bottlenecks
45
1.12. Phenomenological models of polymer deformation under tensile and compressive stresses
45
1.13. Conclusions
47
References
48
Chapter 2 Modeling Mechanical Properties of Segmented Polyurethanes
V.V. Ginzburg , J. Bicerano, C.P. Christenson, A.K. Schrock, A.Z. Patashinski
2.1. Introduction
59
2.2. Predicting Young's modulus of segmented polyurethanes
63
2.2.1. Relationship between Young's modulus and formulation – experimental observations
63
2.2.2. Theory
64
2.2.3. Young's modulus: comparing theory with experiments
72
2.3. Modeling tensile stress-strain behavior
76
2.4. Linear viscoelasticity
82
2.5. Non-equilibrium factors and their influence on mechanical properties
84
2.6. Conclusions and Outlook
84
Acknowledgment
85
References
85
PART II NANOCOMPOSITES: INFLUENCE OF PREPARATION
Chapter 3 Nanoparticles/Polymer Composites: Fabrication and Mechanical Properties
M.Q. Zhang, M.Z. Rong, W.H. Ruan
3.1. Introduction
93
3.2. Dispersion-oriented manufacturing of nanocomposites
95
3.2.1. Conventional two-step manufacturing
95
3.2.2. Specific two-step manufacturing
107
3.2.3. One-step manufacturing
118
3.3. Dispersion and filler/matrix interaction-oriented manufacturing of nanocomposites
120
3.3.1. Two-step manufacturing in terms of in situ reactive compatibilization
120
3.3.2. One-step manufacturing in terms of in situ graft and crosslinking
124
3.4. Dispersion, filler/filler interaction and filler/matrix interaction-oriented manufacturing of nanocomposites
129
3.5. Conclusions
135
Acknowledgements
136
References
136
Chapter 4 Rubber Nanocomposites: New Developments, New Opportunities
L. Bokobza
4.1. Introduction
141
4.2. General considerations on elastomeric composites
142
4.3. Spherical in situ generated reinforcing particles
144
4.4. Carbon nanotube-filled rubber composites
153
4.5. Conclusions
161
References
162
Chapter 5 Organoclay, Particulate and Nanofibril Reinforced Polymer-Polymer Composites: Manufacturing, Modeling and Applications
D. Bhattacharyya, S. Fakirov
5.1. Introduction
167
5.2. Polypropylene/organoclay nanocomposites: experimental characterisation and modeling
169
5.2.1. Peculiarities of polymer/clay nanocomposites
169
5.2.2. Parametric study and associated properties of PP/organoclay nanocomposites
171
5.2.3. Evaluation of the experimental data by means of Taguchi and Pareto ANOVA methods
174
5.2.4. Materials, manufacturing and characterisation of nanocomposites
178
5.2.5. Analytical models for composites
179
5.2.6. Comparisons of experimental results with the calculated values
182
5.3. The dispersion problem in the case of polymer-polymer nanocomposites
185
5.3.1. Manufacturing of nanofibrillar polymer-polymer composites
187
5.3.2. Nanofibrillar vs. microfibrillar polymer-polymer composites and their peculiarities
188
5.4. Directional, thermal and mechanical characterisation of polymer-polymer nanofibrillar composites
190
5.4.1. Directional state of NFC as revealed by wide-angle X-ray scattering
190
5.4.2. Thermal characterization of NFC
192
5.4.3. Mechanical properties of NFC
193
5.5. Potentials for application of nanofibrillar composites and the materials developed from neat nanofibrils
196
5.6. Conclusions and outlook
199
Acknowledgments
200
References
201
PART III NANO- AND MICROCOMPOSITES: INTERPHASE
Chapter 6 Viscoelasticity of Amorphous Polymer Nanocomposites with Individual Nanoparticles
J. Kalfus
6.1. Introduction
209
6.2. Brief physics of amorphous polymer matrices
210
6.2.1. Equilibrium structure of amorphous chains
210
6.2.2. Microscopic relaxation modes and segmental mobility
212
6.2.3. Entropy vs. energy driven mechanical response
214
6.3. Basic aspects of amorphous polymer nanocomposites
216
6.3.1. Structure of surface adsorbed chains
217
6.3.2. Segmental immobilization of chains in the presence of solid surfaces
219
6.4. Reinforcement of amorphous nanocomposite below and above matrix Tg
222
6.5. Strain induced softening of amorphous polymer nanocomposites
228
6.6. Relaxation of chains in the presence of nanoparticles
233
6.7. Conclusions and outlook
235
Acknowledgements
236
References
236
Chapter 7 Interphase Phenomena in Polymer Micro- and Nanocomposites
J. Jancar
7.1. Introduction
241
7.2. Micro-scale interphase in polymer composites
246
7.3. Nano-scale interphase
250
7.4. Chain immobilization on the nano-scale
252
7.5. Characteristic length-scale in polymer matrix nanocomposites
255
7.6. Conclusions and outlook
257
Acknowledgement
258
References
258
PART IV NANO- AND MICROCOMPOSITES: CHARACTERIZATION
Chapter 8 Deformation Behavior of Nanocomposites Studied by X-Ray Scattering: Instrumentation and Methodology
N. Stribeck
8.1. Introduction
269
8.2. Scattering theory and materials structure
272
8.2.1. Relation between a CDF and IDFs
275
8.3. Analysis options derived from scattering theory
276
8.3.1. Completeness – a preliminary note
276
8.3.2. Analysis options
276
8.3.3. Parameters, functions and operations
277
8.4. The experiment
278
8.4.1. Principal design
278
8.4.2. Engineering solutions
279
8.4.3. Scattering data and its evaluation
284
8.5. Techniques: Dynamic vs. stretch-hold
286
8.6. Advanced goal: Identification of mechanisms
286
8.7. Observed promising effects from stretch-hold experiments
289
8.7.1. Orientation of nanofibrils in highly oriented polymer blends by means of USAXS
289
8.7.2. USAXS studies on undrawn and highly drawn PP/PET blends
291
8.8. Choosing experiments
293
8.8.1. Experiments with a macrobeam
293
8.8.2. Experiments with a microbeam
294
8.9. Conclusion and outlook
295
References
296
Chapter 9 Creep and Fatigue Behavior of Polymer Nanocomposites
A. Pegoretti
9.1. Introduction
301
9.2. Generalities on the creep behavior of viscoelastic materials
302
9.3. Generalities on the fatigue resistance of polymeric materials
306
9.4. Creep behavior of polymer nanocomposites
309
9.4.1. Creep response of PNCs containing one-dimensional nanofillers
309
9.4.2. Creep response of PNCs containing two-dimensional nanofillers
315
9.4.3. Creep response of PNCs containing three-dimensional nanoparticles
317
9.5. Fatigue resistance of polymer nanocomposites
321
9.5.1. Fatigue behavior of PNCs containing one-dimensional nanofillers
322
9.5.2. Fatigue behavior of PNCs containing two-dimensional nanofillers
326
9.5.3. Fatigue behavior of PNCs containing three-dimensional nanoparticles
332
9.6. Conclusions and outlook
334
References
335
Chapter 10 Deformation Mechanisms of Functionalized Carbon Nanotube Reinforced Polymer Nanocomposites
S.C. Tjong
10.1. Introduction
341
10.2. Deformation characteristics
343
10.2.1. CNT/glassy thermoplastic nanocomposites
345
10.2.2. CNT/semicrystalline thermoplastic nanocomposites
356
10.2.3. CNT/epoxy nanocomposites
362
10.2.4. CNT/elastomer nanocomposites
369
10.3. Conclusions
371
References
371
Chapter 11 Fracture Properties and Mechanisms of Polyamide/Clay Nanocomposites
A. Dasari, S.-H. Lim, Z.-Z. Yu, Y.-W. Mai
11.1. Introduction
377
11.2. Dispersion of clay in polymers
378
11.3. Crystallization behavior
384
11.4. Fracture properties and mechanisms
387
11.4.1. Improved toughness in polymer/clay nanocomposites
387
11.4.2. Brittleness of polymer/clay nanocomposites
393
11.4.3. Approaches to improve fracture toughness of polymer/clay nanocomposites
399
11.5. Conclusions and future work
414
Acknowledgements
415
References
415
Chapter 12 On the Toughness of "Nanomodified" Polymers and Their Traditional Polymer Composites
J. Karger-Kocsis
12.1. Introduction
425
12.2. Toughness assessment
427
12.3. Nanomodified thermoplastics
428
12.3.1. Amorphous polymers
428
12.3.2. Semicrystalline polymers
432
12.4. Nanomodified thermosets
444
12.4.1. (Neat) Resins
444
12.4.2. Toughened and hybrid resins
453
12.5. Nanomodified traditional composites
456
12.5.1. Thermoplastic matrices
457
12.5.2. Thermoset matrices
457
12.6. Outlook and future trends
460
Acknowledgements
460
References
461
Chapter 13 Micromechanics of Polymer Blends: Microhardness of Polymer Systems Containing a Soft Component and/or Phase
S. Fakirov
13.1. Introduction
471
13.2. The peculiarity of polymer systems containing a soft component and/or phase
472
13.3. Comparison between measured and computed microhardness values for various systems
477
13.3.1. Two-component multiphase systems comprising soft phase(s) (blends of semicrystalline homopolymers)
477
13.3.2. One-component multiphase systems containing soft phase(s) (polyblock copolymers)
478
13.3.3. Two-component one-phase systems (miscible blends of amorphous polymers)
482
13.3.4. Two-component two-phase amorphous systems containing a soft phase
484
13.3.5. One-component two-phase systems (semicrystalline polymers with Tg below room temperature)
487
13.4. Main factors determining the microhardness of polymer systems containing a soft component and/or phase
489
13.4.1. Importance of the ratio hard/soft components (or phases)
489
13.4.2. Crystalline or amorphous solids
490
13.4.3. Copolymers vs. polymer blends
492
13.4.4. New data on the relationship between H and T9 of amorphous polymers
493
13.4.5. Modified additivity law for systems containing soft component and/or phase
495
13.5. Microhardness on the interphase boundaries in polymer blends and composites and doubly injection molding processing
495
13.5.1. Microhardness on the interphase boundaries in polymer blends
495
13.5.2. Microhardness on the interphase boundaries in polymers after double injection molding processing
502
13.6. Conclusions and outlook
510
Acknowledgements
512
References
512
PART V NANOCOMPOSITES: MODELING
Chapter 14 Some Monte Carlo Simulations on Nanoparticle Reinforcement of Elastomers
J.E. Mark, T.Z. Sen, A. Kloczkowski
14.1. Introduction
519
14.2. Description of simulations
520
14.2.1. Rotational isomeric state theory for conformation-dependent properties
520
14.2.2. Distribution functions
520
14.2.3. Applications to unfilled elastomers
521
14.2.4. Applications to filled elastomers
522
14.3. Spherical particles
522
14.3.1. Particle sizes, shapes, concentrations, and arrangements
522
14.3.2. Distributions of chain end-to-end distances
523
14.3.3. Stress-strain isotherms
525
14.3.4. Effects of arbitrary changes in the distributions
526
14.3.5. Some preliminary results on physisorption
528
14.3.6. Relevance of cross linking in solution
530
14.3.7. Detailed descriptions of conformational changes during chain extension
534
14.4. Ellipsoidal particles
534
14.4.1. General features
534
14.4.2. Oblate ellipsoids
536
14.5. Aggregated particles
537
14.5.1. Real systems
537
14.5.2. Types of aggregates for modeling
537
14.5.3. Deformabilities of aggregates
538
14.6. Potential refinements
538
14.7. Conclusions
538
Acknowledgments
538
References
539
Chapter 15 Modeling of Polymer Clay Nanocomposites for a Multiscale Approach
P.E. Spencer, J. Sweeney
15.1. Introduction
545
15.2. Sequential multiscale modeling
547
15.3. Representative volume element
548
15.3.1. Effective elastic material properties
549
15.3.2. StAtistical ensemble
550
15.3.3. Periodic boundary conditions
551
15.4. Generating RVE geometry
553
15.4.1. Number of platelets
553
15.4.2. Generation of platelet configurations
554
15.5. Periodic finite element mesh
556
15.6. Numerical solution process
558
15.6.1. Finite element analysis of boundary value problem
558
15.6.2. Ensemble averaged elastic properties
560
15.6.3. Automation
561
15.7. Elastic RVE numerical results
562
15.7.1. Fully exfoliated straight platelets
565
15.7.2. Effect of platelet orientation
567
15.7.3. Curved platelets
569
15.7.4. Multi-layer stacks of intercalated platelets
572
15.8. Conclusions
574
Acknowledgements
576
References
576
Acknowledgements to previous publishers 579
Author Index 591
Subject Index 597