Atjaunināt sīkdatņu piekrišanu

E-grāmata: Nanobiosensors for Personalized and Onsite Biomedical Diagnosis

Edited by (Indian Institute of Technology Guwahati (IITG), Department of Biosciences and Bioengineering, India)
  • Formāts: EPUB+DRM
  • Sērija : Healthcare Technologies
  • Izdošanas datums: 22-Jul-2016
  • Izdevniecība: Institution of Engineering and Technology
  • Valoda: eng
  • ISBN-13: 9781849199513
Citas grāmatas par šo tēmu:
  • Formāts - EPUB+DRM
  • Cena: 237,94 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: EPUB+DRM
  • Sērija : Healthcare Technologies
  • Izdošanas datums: 22-Jul-2016
  • Izdevniecība: Institution of Engineering and Technology
  • Valoda: eng
  • ISBN-13: 9781849199513
Citas grāmatas par šo tēmu:

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

Nanobiosensors have been successful for in vitro as well as in vivo detection of several biomolecules and it is expected that this technology will revolutionize point-of-care and personalized diagnostics, and will be extremely applicable for early disease detection and therapeutic applications. This book describes the emerging nanobiosensor technologies which are geared towards onsite clinical applications and those which can be used as a personalised diagnostic device. Biosensor technologies and materials covered include electrochemical biosensors; implantable microbiosensors; microfluidic technology; surface plasmon resonance-based technologies; optical and fibre-optic sensors; lateral flow biosensors; lab on a chip; nanomaterials based (graphene, nanoparticles, nanocomposites, and other carbon nanomaterial) sensors; metallic nanobiosensors; wearable and doppler-based non-contact vital signs biosensors; and technologies for smartphone based disease diagnosis. Clinical applications of these technologies covered in this book include detection of various protein biomarkers, small molecules, cancer and bacterial cells; detection of foodborne pathogens; generation and optimisation of antibodies for biosensor applications; microRNAs and their applications in diagnosis for osteoarthritis; detection of circulating tumor cells; online heartbeat monitoring; analysis of drugs in body fluids; sensing of nucleic acids; and monitoring oxidative stress.
About the Author xix
1 Gold nanoparticle-based electrochemical biosensors for biomedical diagnosis applications 1(20)
1.1 Introduction
1(2)
1.2 Synthesis of AuNPs
3(1)
1.2.1 Electrodeposition of AuNPs
3(1)
1.2.2 Chemical synthesis of AuNPs
4(1)
1.3 Functions of AuNPs in electrochemical biosensors
4(10)
1.3.1 Improvement of electron transfer efficiency
5(2)
1.3.2 Immobilization of biological recognition element
7(1)
1.3.3 Signal generation and amplification
8(6)
1.4 Conclusions and outlook
14(1)
Acknowledgments
15(1)
References
15(6)
2 Development and application of microbiosensors for in-vivo diagnostics 21(16)
2.1 Introduction
21(1)
2.2 In-vivo enzymatic biosensors
22(7)
2.2.1 Commercialized continuous glucose monitoring systems (CGMS)
22(2)
2.2.2 In-vivo enzymatic biosensor systems in development
24(5)
2.3 Development of non-enzymatic in-vivo biosensors
29(1)
2.4 Conclusion
30(1)
References
30(7)
3 Electrochemical biosensors: fabrication and applications in biodiagnostics 37(18)
3.1 Principle of electrochemical biosensor
37(2)
3.1.1 Voltammetry
37(1)
3.1.2 Potentiometry
38(1)
3.1.3 Surface charge using field-effect transistors (FETs)
38(1)
3.1.4 Conductometry
39(1)
3.2 Electrochemical nucleic acid sensors
39(3)
3.2.1 Detection of Genotoxicants/Pesticide
40(1)
3.2.2 Detection of hybridisation can be done by different strategies
40(2)
3.3 Electrochemical enzymatic sensor
42(1)
3.3.1 Direct detection of analytes
42(1)
3.3.2 Indirect detection of analytes via inhibition of enzyme activity
43(1)
3.4 Electrochemical immunosensors
43(1)
3.4.1 An indirect immunosensor
43(1)
3.4.2 The direct immunosensor
44(1)
3.5 Electrochemical whole cells based sensors
44(1)
3.5.1 Based on the cellular activity of the cell
45(1)
3.5.2 Based on cellular barrier behavior
45(1)
3.6 Electrochemical aptasensors
45(1)
3.7 Widely used materials in the construction of electrochemical biosensors
45(4)
3.7.1 Conducting polymers
45(2)
3.7.2 Carbon nanomaterial in electrochemical biosensors
47(1)
3.7.3 Nanoparticles
48(1)
3.8 Practical applications of the electrochemical biosensors
49(4)
3.8.1 Biosensors of healthcare
49(1)
3.8.2 Biosensors for environmental monitoring
50(1)
3.8.3 Biosensors in food industry
51(1)
3.8.4 Biosensors for cancer
52(1)
3.8.5 Biosensors for pathogens
52(1)
Acknowledgement
53(1)
References
53(2)
4 Microchip-based separation and detection methods for chemically and biologically valuable analytes 55(18)
4.1 Introduction
55(2)
4.2 Separation and detection methods for chemically and biologically valuable analytes
57(10)
4.2.1 Separation and extraction of DNA
57(1)
4.2.2 Separation of proteins
58(4)
4.2.3 Separation of small biological analytes
62(2)
4.2.4 Miscellaneous separation
64(3)
4.3 Challenges and future outlook
67(1)
4.4 Conclusion
67(1)
Acknowledgment
68(1)
References
68(5)
5 Biosensors of in vitro detection of cancer and bacterial cells 73(22)
5.1 Introduction
73(2)
5.2 Biosensors of in vitro detection of cancer cells
75(4)
5.2.1 Aptamers for detection of cancer cells
75(4)
5.3 Biosensors of in vitro detection of bacterial cells
79(5)
5.3.1 Electrochemical and optical nanobiosensors for bacterial cells detection
79(2)
5.3.2 Microfluidics for bacterial cells detection
81(1)
5.3.3 Paper-based nanobiosensors for bacterial cell detection
82(1)
5.3.4 Lab-on-a-chip and chip-plate based nanobiosensors for bacterial cells detection
83(1)
5.3.5 Perspectives of nanobiosensors in bacterial cells detection
83(1)
5.4 Conclusion and final remarks
84(1)
References
85(10)
6 Biacore — a surface plasmon resonance-based technology 95(14)
6.1 Introduction
95(2)
6.2 Biacore technology
97(1)
6.3 Principle in biacore system
97(2)
6.4 Biacore sensing surfaces
99(2)
6.5 Non-fouling on Biacore sensing surfaces
101(1)
6.6 Biomolecular recognition in biacore system
102(1)
6.7 Kinetic analyses
103(1)
6.8 Refunctioning and regeneration of chip surfaces
103(2)
6.9 Recommendations for controlled experiments
105(1)
6.10 Conclusions
105(1)
References
105(4)
7 Implantable microbiosensors: towards in vivo monitoring 109(30)
7.1 Introduction
109(2)
7.2 Microbiosensor technologies
111(4)
7.3 Analyte-specific biosensors
115(7)
7.4 New materials for improving the in vivo stability of implantable microbiosensors
122(7)
7.5 Conclusion and future prospects
129(1)
Acknowledgement
130(1)
References
130(9)
8 Nanomaterials based biosensors: a smart approach towards on-site clinical diagnosis 139(26)
8.1 Introduction
139(2)
8.2 Conventional techniques for clinical diagnosis
141(1)
8.3 Nanomaterials for clinical diagnosis
141(17)
8.3.1 Metal nanoparticles
144(1)
8.3.2 Quantum dots
145(1)
8.3.3 Magnetic nanoparticles
146(2)
8.3.4 Carbon nanostructures
148(1)
8.3.5 Nanostructured conducting polymers
149(2)
8.3.6 Nanostructured metal oxide
151(7)
8.4 Challenges and future prospects
158(1)
8.5 Conclusions
158(1)
Acknowledgments
159(1)
References
159(6)
9 Optical waveguide-based biosensor for label-free monitoring of living cells 165(16)
Abstract
165(1)
9.1 Label-free optical biosensors in cell adhesion research
165(2)
9.2 The Epic BenchTop optical biosensor
167(2)
9.3 Cell adhesion on tailored surfaces
169(1)
9.4 The dependence of cell adhesion kinetics on the surface density of integrin ligands, as measured with the Epic BT biosensor
170(5)
9.5 Outlook
175(1)
Acknowledgment
175(1)
References
175(6)
10 Optical biosensors for the detection of food borne pathogens 181(28)
10.1 Introduction
181(1)
10.2 Current technologies for pathogen detection
182(1)
10.3 Enzyme-linked immunosorbent assay (ELISA)
182(1)
10.4 Polymerase chain reaction (PCR)
183(1)
10.5 Biosensors
183(2)
10.5.1 Overview
183(1)
10.5.2 Biorecognition techniques
184(1)
10.5.3 Antibodies
184(1)
10.5.4 Enzymes
184(1)
10.5.5 Nucleic acids
184(1)
10.6 Transduction techniques
185(1)
10.6.1 Electrochemical
185(1)
10.6.2 Piezoelectric
185(1)
10.7 Sample preparation
185(1)
10.8 Optical biosensors
186(2)
10.8.1 Surface plasmon resonance (SPR)
186(2)
10.9 Fluorescence
188(7)
10.9.1 Auto-fluorescent protein (AFP)
189(1)
10.9.2 Bioluminescence resonance energy transfer
189(1)
10.9.3 Quantum dots
189(6)
10.10 Surface enhanced Raman spectroscopy (SERS)
195(4)
10.11 Other methods
199(3)
10.11.1 Interferometry
199(1)
10.11.2 Optical fibre
199(1)
10.11.3 Carbon nanotubes
200(2)
10.12 Conclusions and future prospects
202(2)
Acknowledgements
204(1)
References
204(5)
11 Generation and optimisation of antibodies for biosensor applications 209(22)
11.1 Antibody generation for use in biosensors
209(2)
11.2 Polyclonal antibody generation
211(4)
11.2.1 Process of adaptive immune response
211(1)
11.2.2 Hosts for polyclonal antibody production
212(2)
11.2.3 Purification of polyclonal antibodies
214(1)
11.3 Monoclonal antibody generation
215(6)
11.3.1 Hybridoma cell production
215(1)
11.3.2 Purification of monoclonal antibodies
216(1)
11.3.3 Recombinant antibody generation
216(1)
11.3.4 Generation of recombinant antibodies
217(1)
11.3.5 Selection of recombinant antibodies through phage display
217(2)
11.3.6 DiCAST, a novel technology of direct clone analysis and selection
219(1)
11.3.7 Selection of recombinant antibodies using Biacore 4000
220(1)
11.3.8 Expression of soluble recombinant antibodies
220(1)
11.3.9 Purification of recombinant antibodies
221(1)
11.4 Antibody optimisation for biosensor applications
221(4)
11.4.1 Optimisation of antibody specificity, sensitivity and affinity for biosensors through genetic modification
221(2)
11.4.2 Optimisation of antibody stability for biosensor applications
223(1)
11.4.3 Optimisation of antibody immobilisation strategies for biosensors
224(1)
11.5 Summary
225(1)
Acknowledgements
225(1)
References
225(6)
12 Smartphone-based in vitro diagnostic technologies for personalized healthcare monitoring and management 231(22)
12.1 Introduction
231(1)
12.2 Signal detection in SP-based in vitro diagnostics
232(9)
12.2.1 Colorimetric, fluorescent and luminescent detection
232(1)
12.2.2 SPR detection
233(3)
12.2.3 Lateral flow assays
236(1)
12.2.4 Microscopy
236(1)
12.2.5 Electrochemical detection
236(3)
12.2.6 Cytometry
239(2)
12.3 Applications of smartphone-based in vitro diagnostics
241(5)
12.3.1 Detection of biomolecules, metabolites and biomarkers
241(1)
12.3.2 Detection of microorganisms
242(4)
12.3.3 Detection of other analytes
246(1)
12.3.4 Other bio-analytical applications
246(1)
12.4 Conclusions, challenges and future trends
246(1)
References
247(6)
13 Lateral flow biosensors 253(24)
13.1 Introduction
253(1)
13.2 The mechanism of lateral flow immunoassay
253(2)
13.3 Types of LFIA
255(1)
13.3.1 Noncompetitive immunoassay
255(1)
13.3.2 Competitive immunoassay
255(1)
13.4 LFIA components
255(7)
13.4.1 Antibodies
257(1)
13.4.2 Membrane
258(2)
13.4.3 Tracers
260(1)
13.4.4 Pads
261(1)
13.5 Important parameters for LFIA
262(2)
13.5.1 Biomolecule immobilization
262(2)
13.5.2 Biomolecule coverage on the tracer
264(1)
13.5.3 Buffer and pH
264(1)
13.6 Applications of lateral flow biosensors
264(1)
13.7 Major hurdles facing the lateral flow biosensors
265(1)
13.8 Future perspectives of lateral flow biosensors for personalized and onsite medicine
266(1)
13.9 Conclusion
267(1)
References
268(9)
14 MicroRNAs and their applications in diagnosis for osteoarthritis 277(16)
14.1 Introduction
277(1)
14.2 Potential miRNAs as early diagnostic biomarkers for OA
278(4)
14.2.1 miR-146
279(1)
14.2.2 miR-140
280(1)
14.2.3 miR-22
280(1)
14.2.4 miR-27b
281(1)
14.3 MiRNAs biomarker detection technologies
282(2)
14.4 Nano-biomaterials for molecular beacon-based miRNA detection
284(2)
14.5 Conclusions
286(1)
References
287(6)
15 Electrochemical capacitive biosensors for point-of-care diagnostics: principles and applications 293(24)
15.1 Introduction
293(8)
15.1.1 Electrochemistry and biosensors
293(5)
15.1.2 Potentiometric, amperometric and impedimetric biosensors
298(3)
15.2 Types of capacitance and capacitive phenomena
301(8)
15.2.1 Electrostatic or geometrical capacitance
302(1)
15.2.2 Double-layer capacitance
302(2)
15.2.3 Dipolar capacitance of molecular layers
304(2)
15.2.4 Electrochemical capacitance
306(3)
15.3 Capacitive biosensors
309(4)
15.4 Summarization and perspectives
313(1)
References
314(3)
16 AC electrokinetics-based capacitive biosensor as a platform technology for on-site detection of biospecific interactions 317(24)
16.1 Introduction
317(2)
16.2 Mechanisms
319(5)
16.2.1 Capacitive detection of biomolecular binding on electrode surface
319(1)
16.2.2 Direct detection of interfacial capacitance
320(1)
16.2.3 ACEK enhancement of affinity sensing
321(3)
16.3 Devices and methods
324(2)
16.3.1 Interdigitated microelectrode sensors
324(1)
16.3.2 Sample preparation and electrode functionalization
324(2)
16.3.3 Measurement procedure
326(1)
16.4 Experiments
326(10)
16.4.1 Capacitive sensing for rapid analysis of surface quality control
326(1)
16.4.2 Capacitance changes due to protein binding and detachment
327(1)
16.4.3 Sensitive and quantitative detection
328(1)
16.4.4 Effect of AC frequency
329(3)
16.4.5 Effect of electrode designs
332(2)
16.4.6 Selectivity in complex fluids
334(2)
16.5 Conclusions
336(2)
Acknowledgments
338(1)
References
338(3)
17 Fibre optical technology for monitoring and diagnostic applications 341(22)
17.1 Introduction
341(5)
17.1.1 Fibre optic technology
342(3)
17.1.2 Bioreceptors
345(1)
17.2 Immobilization
346(1)
17.2.1 Adsorption
346(1)
17.2.2 Microencapsulation
346(1)
17.2.3 Entrapment
347(1)
17.2.4 Cross-linking
347(1)
17.2.5 Covalent bonding
347(1)
17.3 Sensing schemes
347(3)
17.3.1 Absorbance
348(1)
17.3.2 Fluorescent
349(1)
17.4 Surface plasmon resonance (SPR)
350(1)
17.5 Advantageous and disadvantageous of optical fibre biosensors
350(1)
17.6 Clinical and diagnostic applications
351(1)
17.7 Biosensors for diabetes applications
352(1)
17.7.1 Glucose as diabetes biomarker
352(1)
17.7.2 Biosensors for glucose measuring
352(1)
17.8 Biosensors for cardiovascular diseases applications
353(1)
17.8.1 Cardiovascular disease biomarkers
353(1)
17.8.2 Biosensors in cardiovascular disease
353(1)
17.9 Biosensors for cancer applications
354(1)
17.9.1 Cancer biomarkers
354(1)
17.9.2 Biosensors in cancer disease
355(1)
17.10 Conclusions
355(1)
References
356(7)
18 Nanobiosensors for the detection of circulating tumor cells 363(16)
18.1 Introduction
363(1)
18.2 Nanostructured interfaces designed for CTC detection
364(7)
18.2.1 From micro to nano
364(2)
18.2.2 From artificial to biomimetic
366(2)
18.2.3 From traditional to smart
368(3)
18.3 Purification and isolation strategy based on nanostructured interfaces
371(2)
18.4 Conclusions and prospects
373(1)
Acknowledgments
373(1)
References
374(5)
19 Design investigations for robust and continuous online heartbeat monitoring using wearable vs. Doppler-based non-contact vital signs biosensors 379(42)
19.1 Wearable ECG sensors
379(5)
19.1.1 Components of the wearable ECG sensor system
381(3)
19.2 Implantable cardioverter defibrillator (ICD)
384(3)
19.2.1 Components of the ICD system
385(2)
19.3 Biosignal instrumentation amplifier (INA)
387(11)
19.3.1 Biosignal Instrumentation Amplifier (INA)
389(1)
19.3.2 INA design consideration
390(1)
19.3.3 Fully differential folded-cascode based chopper stabilized INA
391(7)
19.3.4 State-of-the-art performance comparison
398(1)
19.4 Doppler-based non-contact vital signs (NCVS) sensor
398(17)
19.4.1 Doppler radar principle for NCVS Sensor
400(1)
19.4.2 Quadrature receiver and arc-tangent demodulation for NCVS sensors
401(2)
19.4.3 Direct-conversion receiver and range correlation in NCVS sensors
403(2)
19.4.4 Antenna characterization for NCVS sensor — directivity and radiation patterns
405(1)
19.4.5 NCVS system evaluated with several antennas
406(5)
19.4.6 Experimental results and analysis
411(4)
19.5 Summary of heart beat sensing techniques
415(1)
References
416(5)
20 Lab on a chip for point-of-care analysis of drugs in body fluids 421(22)
20.1 Introduction
421(1)
20.2 Point-of-collection testing (POCT)
422(1)
20.3 Lab-on-chip system for POCT
423(15)
20.3.1 Materials and fabrication
423(2)
20.3.2 Detection
425(3)
20.3.3 POCT drug analysis in body fluids with lab-on-chip systems
428(10)
20.4 Conclusions and future directions
438(1)
References
439(4)
21 Hydrogel-based biosensors: fundamentals and applications 443(16)
21.1 Introduction
443(1)
21.2 General properties of hydrogel
444(4)
21.2.1 Equilibrium swelling
444(2)
21.2.2 Swelling kinetics
446(1)
21.2.3 Pore size/porosity of the gels
447(1)
21.3 Immobilization of biomolecules and applications as biosensors
448(5)
21.3.1 Physical deposition and cross-linking
449(1)
21.3.2 Entrapment
449(1)
21.3.3 Covalent immobilization
450(2)
21.3.4 Electrostatic immobilization
452(1)
21.3.5 Affinity-based immobilization
453(1)
21.4 Multi-analyte detecting system
453(2)
21.5 Summary
455(1)
References
455(4)
22 Applications of graphene microelectrodes in clinical analysis 459(14)
22.1 Biosensors based on nanostructured materials
459(1)
22.2 Graphene nanomaterials used in electrochemical biosensors fabrication
460(1)
22.3 Miniaturized graphene electrochemical biosensors for health monitoring
461(7)
22.3.1 Enzymatic biosensors
461(4)
22.3.2 Immunosensors
465(2)
22.3.3 DNA sensors
467(1)
22.4 Conclusions and future prospects
468(1)
Acknowledgments
469(1)
References
469(4)
23 Sensing of nucleic acids and cancer cells using nanostructure-SPR integrated with microfluidic chip 473(26)
23.1 Introduction
473(1)
23.2 Conventional SPR
474(1)
23.3 Localized surface plasmon resonance (LSPR)
474(2)
23.4 Nanostructure array SPR
476(4)
23.5 Integration of SPR sensors with microfluidic chip
480(1)
23.6 SPR sensors for multiplexing
480(2)
23.7 SPR-based biosensors
482(9)
23.7.1 SPR-based biosensors for detection of nucleic acids
483(5)
23.7.2 SPR-based biosensors for detection of cancer cells
488(3)
23.8 Conclusion
491(1)
References
492(7)
24 Surface plasmon resonance based miniaturized biosensors for medical applications 499(22)
24.1 Introduction
499(1)
24.2 Principle of SPR-sensors work
500(2)
24.3 Types of SPR-sensors
502(3)
24.3.1 SPR-sensors with prismatic coupling devices (couplers)
502(2)
24.3.2 SPR-sensors with waveguide coupling devices
504(1)
24.3.3 SPR-sensors with diffraction gratings
504(1)
24.3.4 Localized SPR (LSPR)
504(1)
24.4 Analytical parameters of SPR-sensors
505(1)
24.5 Sensor surface functionalization
506(1)
24.5.1 Covalent binding
506(1)
24.5.2 Non-covalent binding
507(1)
24.6 SPR-analysis formats
507(2)
24.7 Mass-produced SPR-sensors
509(1)
24.8 SPR-sensors for non-laboratory diagnostics
509(6)
24.8.1 Commercial portable SPR-sensors
509(4)
24.8.2 Recent works in portable SPR-sensors development
513(2)
24.9 Conclusion
515(1)
Acknowledgments
516(1)
References
516(5)
25 Methods for monitoring oxidative stress using conventional and advanced nanodiagnostics methods 521(16)
25.1 Introduction
521(2)
25.1.1 Oxidants
521(1)
25.1.2 Antioxidants
522(1)
25.2 Conventional methods for monitoring oxidative stress
523(2)
25.2.1 Determination of total antioxidant activity
523(1)
25.2.2 Method for monitoring lipid peroxidation
524(1)
25.2.3 Measurement of redox status — reduced glutathione (GSH)/oxidized glutathione (GSSG) ratio
524(1)
25.3 Measurement of oxidative status using various oxidative stress biomarkers
525(4)
25.3.1 Determination of acetyl chol inesterase activity
525(1)
25.3.2 Determination of membrane sulfhydryl (—SH) group
526(1)
25.3.3 Determination of protein carbonyl content
527(2)
25.3.4 Determination of red blood cell osmotic fragility
529(1)
25.4 Advanced nanodiagnostic methods for monitoring oxidative stress
529(4)
25.4.1 Gold nanoparticle based assay for biomarker of oxidative stress
530(1)
25.4.2 Detection of glutathione using biosensor
530(1)
25.4.3 Detection of 3-nitro-L-tyrosine (3NT) using solid phase extraction (SPE) sorbent material
531(2)
25.4.4 Microsensor arrays
533(1)
25.4.5 Detection of 8-hydroxy-2'-deoxyguanosine (8OHdG) using immunosensor
533(1)
25.5 Conclusion and the future
533(1)
Acknowledgment
534(1)
List of abbreviations
534(1)
References
534(3)
26 Metallic nanobiosensors for biological analysis and medical diagnostics 537(30)
26.1 Introduction
537(3)
26.2 Sensing principles
540(14)
26.2.1 Sensing based on absorption of metal NPs
540(4)
26.2.2 Sensing based on light scattering of metal NPs
544(3)
26.2.3 Sensing based on interaction between metal NPs and fluorophore/reporter
547(3)
26.2.4 Sensing based on intrinsic luminescent properties of metal NCs
550(4)
26.2.5 Summary/outlook
554(1)
26.3 Development of paper-based POC diagnostic devices
554(4)
26.3.1 Dipstick assays
555(1)
26.3.2 Lateral flow assays
555(1)
26.3.3 Microfluidic paper analytical devices
556(1)
26.3.4 Summary/outlook
557(1)
26.4 Future perspectives
558(1)
26.4.1 Commercialization potentials
558(1)
26.4.2 Future challenges
558(1)
References
559(8)
27 Carbon nanomaterial based biosensors for onsite biomedical diagnosis 567(16)
27.1 Introduction
567(1)
27.2 Basic instruction about carbon nanomaterials (CNMs)
567(2)
27.3 CNMs-based biosensor and its applications
569(8)
27.3.1 In vitro application of CNMs biosensor
569(5)
27.3.2 In vivo application of CNMs-based biosensor
574(3)
27.4 Conclusions
577(2)
References
579(4)
28 Nanoparticle-based sensing of oligonucleotides and proteins 583(10)
28.1 Introduction
583(1)
28.2 Sensing of oligonucleotides
584(2)
28.3 Sensing of protein
586(4)
28.4 Conclusion
590(1)
References
591(2)
Index 593
Dr. Pranjal Chandra is currently working as Assistant Professor and Principal Investigator in the Department of Biosciences and Bioengineering at the Indian Institute of Technology Guwahati (IITG), Guwahati, India. He earned his PhD from the Institute of Biophysio Sensor Technology, Pusan National University, South Korea and did postdoctoral research at Technion - Israel Institute of Technology, Israel. His research group is working towards the development of cheap diagnostic methods based on nanobiosensors, microfluidic systems, paper based sensors for biomedical diagnostics and environmental monitoring. He is the recipient of several awards and fellowships including the Ramanujan Fellowship awarded by the Government of India. Dr. Chandra is an editorial board member of various journals including World Journal of Methodology, USA.