Atjaunināt sīkdatņu piekrišanu

Nanogap Electrodes [Hardback]

Edited by (University of Copenhagen, Denmark)
  • Formāts: Hardback, 432 pages, height x width x depth: 240x170x170 mm, weight: 964 g
  • Izdošanas datums: 04-Aug-2021
  • Izdevniecība: Blackwell Verlag GmbH
  • ISBN-10: 3527332715
  • ISBN-13: 9783527332717
Citas grāmatas par šo tēmu:
  • Hardback
  • Cena: 159,99 €
  • Grāmatu piegādes laiks ir 3-4 nedēļas, ja grāmata ir uz vietas izdevniecības noliktavā. Ja izdevējam nepieciešams publicēt jaunu tirāžu, grāmatas piegāde var aizkavēties.
  • Daudzums:
  • Ielikt grozā
  • Piegādes laiks - 4-6 nedēļas
  • Pievienot vēlmju sarakstam
  • Bibliotēkām
  • Formāts: Hardback, 432 pages, height x width x depth: 240x170x170 mm, weight: 964 g
  • Izdošanas datums: 04-Aug-2021
  • Izdevniecība: Blackwell Verlag GmbH
  • ISBN-10: 3527332715
  • ISBN-13: 9783527332717
Citas grāmatas par šo tēmu:
Unique in combining various synthesis strategies with applications for nanogap electrodes, this book introduces the topic before devoting whole sections to synthesis, characterization, and applications, finishing with interesting phenomena observed using molecular-based devices.

Unique in its scope, this book comprehensively combines various synthesis strategies with applications for nanogap electrodes. Clearly divided into four parts, the monograph begins with an introduction to molecular electronics and electron transport in molecular junctions, before moving on to a whole section devoted to synthesis and characterization. The third part looks at applications with single molecules or self-assembled monolayers, and the whole is rounded off with a section on interesting phenomena observed using molecular-based devices.
Preface xi
1 Nanogap Electrodes and Molecular Electronic Devices
1(24)
Tao Li
1.1 Introduction
1(1)
1.2 Overview of Molecular Electronics
2(14)
1.2.1 Why Molecular Electronics
3(1)
1.2.1.1 History of Computing
3(3)
1.2.1.2 Moore's Law
6(2)
1.2.1.3 Molecular Electronics: A Beyond-CMOS Option
8(2)
1.2.2 Molecular Materials for Organic Electronics
10(1)
1.2.2.1 OLEDs
11(1)
1.2.2.2 OFETs
11(1)
1.2.2.3 OPVs
12(1)
1.2.3 Molecules for Molecular-Scale Electronics
13(3)
1.3 Introduction to Nanogap Electrodes
16(3)
1.4 Summary and Outlook
19(6)
References
19(6)
2 Electron Transport in Single Molecular Devices
25(32)
Lei-Lei Nian
Liang Ma
Jing-Tao Lii
2.1 Introduction
25(1)
2.2 General Methods
26(1)
2.2 Transport Mechanisms
26(5)
2.2.2 Nonequilibrium Green's Function Method
26(3)
2.2.3 Master Equation Method
29(2)
2.3 Single Electron Transport Through Single Molecular Junction
31(4)
2.3.1 Coherent Transport
31(1)
2.3.2 Hopping Transport
32(3)
2.4 Effect of Many-Body Interactions
35(13)
2.4.1 Electron-Vibration Interaction
35(2)
2.4.1.1 Weak Coupling Regime
37(3)
2.4.1.2 Strong-Coupling Regime
40(3)
2.4.2 Electron-Electron Interaction
43(1)
2.4.2.1 Coulomb Blockade
43(2)
2.4.2.2 Kondo Effect
45(3)
2.5 Thermoelectric Transport
48(3)
2.6 First-Principles Simulations of Transport in Molecular Devices
51(1)
2.7 Conclusions
52(5)
References
52(5)
3 Fabricating Methods and Materials for Nanogap Electrodes
57(132)
Xianhui Huang
Weiqiang Zhang
Dong Xiang
Tao Li
3.1 Introduction
57(2)
3.2 Mechanical Controllable Break Junctions
59(9)
3.3 Electrochemical and Chemical Deposition Method
68(7)
3.3.1 Electroplating and Feedback System
68(6)
3.3.2 Chemical Deposition
74(1)
3.4 Oblique Angle Shadow Evaporation
75(3)
3.5 Electromigration and Electrical Breakdown Method
78(11)
3.5.1 Device Fabrication
79(3)
3.5.2 Gap Size Control
82(2)
3.5.3 Electromigration Applications
84(5)
3.6 Molecular Scale Template
89(13)
3.6.1 Molecular Rulers
89(5)
3.6.2 Inorganic Films as Templates
94(2)
3.6.3 On-Wire Lithography
96(4)
3.6.4 Nanowire Mask
100(2)
3.7 Focused Ion Beam
102(6)
3.8 Scanning Probe Lithography and Conducting Probe-Atomic Force Microscopy
108(5)
3.8.1 Destructive Way
108(3)
3.8.2 Constructive Way
111(1)
3.8.3 Conducting Probe-Atomic Force Microscopy
112(1)
3.9 Nanogap Electrodes Prepared with Nonmetallic Materials
113(61)
3.9.1 Introduction
113(1)
3.9.2 Nanogap Electrodes Made from Carbon Materials
114(1)
3.9.2.1 Advantages of Carbon Materials
114(1)
3.9.2.2 Carbon Nanotubes for Nanogap Electrodes
115(15)
3.9.2.3 Graphene
130(23)
3.9.2.4 Silicon Nanogap Electrodes
153(18)
3.9.2.5 Other Materials
171(3)
3.10 Summary and Outlook
174(15)
References
175(14)
4 Characterization Methods and Analytical Techniques for Nanogap Junction
189(50)
Baiti Li
Ziyan Wang
Bin Han
Xi Yu
4.1 Current-Voltage Analysis
189(17)
4.1.1 Coherent Tunneling Transport
190(5)
4.1.2 Transition Voltage Spectroscopy
195(3)
4.1.3 Incoherent Transport
198(8)
4.2 Inelastic Tunneling Spectroscopy (IETS)
206(20)
4.2.1 Principle and Measurement of IETS
206(3)
4.2.2 Selection Rule and Charge Transport Pathway
209(5)
4.2.3 Line Shape of the IETS
214(4)
4.2.4 Application of the IETS
218(1)
4.2.5 Mapping the Charge Transport Pathway in Protein Junction by IETS
219(3)
4.2.6 STM Imaging by IETS
222(4)
4.3 Optical and Optoelectronic Spectroscopy
226(6)
4.4 Concluding Remarks
232(7)
Appendix
233(1)
References
234(5)
5 Single-Molecule Electronic Devices
239(62)
Shengxiong Xiao
5.1 Introduction
239(1)
5.2 Wiring Molecules into "Gaps": Anchoring Groups and Assembly Methods
240(12)
5.2.1 Anchor Groups
240(5)
5.2.2 Effect of Anchor-Bridge Orbital Overlaps on Conductance
245(5)
5.2.3 In Situ Chemical Reactions to Produce Covalent Contacts
250(2)
5.3 Electrical Rectifier
252(17)
5.3.1 Rectification Toward Diodes
255(1)
5.3.2 General Mechanisms for Molecular Rectification
256(1)
5.3.2.1 Aviram-Ratner Model
256(1)
5.3.2.2 Kornilovitch-Bratkovsky-Williams Model
257(1)
5.3.2.3 Datta-Paulsson Model
258(1)
5.3.3 Rectification Originated from Molecules
259(1)
5.3.3.1 D-σ-A and D-π-A Systems
259(1)
5.3.3.2 D-A Diblock Molecular System
260(4)
5.3.4 Rectification Stemming from Different Interfacial Coupling
264(1)
5.3.4.1 Different Electrodes
264(1)
5.3.4.2 Anchoring Groups
265(1)
5.3.4.3 Contact Geometry
265(1)
5.3.4.4 Interfacial Distance
266(1)
5.3.5 Additional Molecular Rectifiers
267(2)
5.4 Conductance Switches
269(13)
5.4.1 Voltage Pulse Induced Switches
270(1)
5.4.2 Light-Induced Switching
271(4)
5.4.3 Switching Triggered by Chemical Process (Redox and pH)
275(3)
5.4.4 Spintronics-Based Switch
278(4)
5.5 Gating the Transport: Transistor-Like Single-Molecule Devices
282(9)
5.5.1 Electrostatic Gate Control
282(5)
5.5.2 Side Gating
287(1)
5.5.3 Electrochemical Gate Control
288(2)
5.5.4 Molecular Quantum Dots
290(1)
5.6 Challenges and Outlooks
291(10)
References
292(9)
6 Molecular Electronic Junctions Based on Self-Assembled Monolayers
301(44)
Yuqing Liu
Zhongming Wei
6.1 Introduction
301(1)
6.2 Molecular Monolayers for Molecular Electronics Devices
302(12)
6.2.1 Monolayers Covalently Bonded to Noble Metals
303(6)
6.2.2 Monolayers Attached to Non-metal Substrates
309(3)
6.2.3 Langmuir-Blodgett Method
312(2)
6.3 Top Electrodes
314(15)
6.3.1 Deposited Metal
314(1)
6.3.1.1 Direct Evaporation
315(1)
6.3.1.2 Indirect Evaporation
316(3)
6.3.2 Make Top Contact by Soft Methods
319(1)
6.3.2.1 Lift-and-Float Approach
319(1)
6.3.2.2 Crosswire Junction
320(2)
6.3.2.3 Transfer Printing
322(1)
6.3.2.4 Graphene as Top Electrode
323(3)
6.3.2.5 Liquid Metal Contact
326(3)
6.4 Experimental Progress with Ensemble Molecular Junctions
329(5)
6.5 Outlook
334(11)
References
335(10)
7 Toward Devices and Applications
345(55)
Ajuan Cui
Kasper Norgaard
7.1 Introduction
345(1)
7.2 Major Issues: Reliability and Robustness
346(12)
7.2.1 Single Molecular Device
347(1)
7.2.1.1 Top-Contact Junctions
347(1)
7.2.1.2 Planar Metallic Nanogap Electrodes
347(2)
7.2.1.3 Planar Nanogap Electrodes Based on Single Walled Carbon Nanotubes (SWCNTs) or Graphene
349(1)
7.2.1.4 The Absorption of Molecule on the Surface of SWCNTs or Graphene
350(1)
7.2.2 Molecular Device Based on Molecule Monolayer
351(2)
7.2.2.1 Bottom Electrodes
353(1)
7.2.2.2 Insulating Layer with Holes to Define the Size of the Bottom Electrodes
353(1)
7.2.2.3 Molecule Monolayer Formation
354(1)
7.2.2.4 Top Electrodes
354(4)
7.3 Potential Integration Solutions
358(13)
7.3.1 Carbon Nanotube or Graphene Interconnects
359(5)
7.3.2 Self-Assembled Monolayers for Integrated Molecular Junctions
364(4)
7.3.3 Cross Bar Architecture
368(3)
7.4 Beyond Simple Charge Transport
371(24)
7.4.1 Mechanics
371(4)
7.4.2 Thermoelectronics
375(6)
7.4.3 Quantum Interference
381(5)
7.4.4 Spintronics
386(1)
7.4.4.1 SAM-Based Magnetic Tunnel Junctions
386(1)
7.4.4.2 Molecule Based Spin-Valves or Magnetic Tunnel Junctions
387(2)
7.4.4.3 Single Molecular Spin Transistor
389(2)
7.4.4.4 Single Molecular Nuclear Spin Transistor
391(2)
7.4.4.5 Molecule Based Hybrid Spintronic Devices
393(2)
7.5 Electrochemistry with Nanogap Electrodes
395(5)
References 400(11)
Index 411
Tao Li is Associate Professor in the Department of Chemistry at Shanghai Jiao Tong University. His research interests are molecular electronics, molecular-scale devices, sythesis and application of organic functional materials and molecular solar thermal batteries.