|
1 Introduction and Overview |
|
|
1 | (14) |
|
1.1 Mobile TV Architectures |
|
|
3 | (6) |
|
1.2 DVB-H Mobile TV System Definitions |
|
|
9 | (3) |
|
|
12 | (3) |
|
2 Wideband CMOS LNA Design Techniques |
|
|
15 | (44) |
|
2.1 Dynamic Range Limits in MOSFETs |
|
|
16 | (10) |
|
|
16 | (3) |
|
2.1.2 The Distortion Limit |
|
|
19 | (6) |
|
2.1.3 Dynamic Range Trade-offs in CMOS |
|
|
25 | (1) |
|
2.2 Traditional CMOS LNA Topologies |
|
|
26 | (7) |
|
|
26 | (2) |
|
|
28 | (1) |
|
|
28 | (3) |
|
2.2.4 L-Degenerate Amplifier |
|
|
31 | (2) |
|
2.3 Recent Trends in Wideband CMOS LNAs |
|
|
33 | (10) |
|
2.3.1 Current Reuse Amplifiers |
|
|
34 | (2) |
|
2.3.2 L-Degenerate Wideband Amplifiers |
|
|
36 | (1) |
|
2.3.3 Capacitive Cross-Coupled CG Amplifiers |
|
|
37 | (2) |
|
2.3.4 Noise and Distortion Cancelling Amplifiers |
|
|
39 | (4) |
|
2.4 Techniques to Improve the Wideband LNA Dynamic Range |
|
|
43 | (13) |
|
2.4.1 Wideband CMOS LNA State-of-the-Art |
|
|
43 | (2) |
|
2.4.2 New Low-Power Noise-Cancelling Technique |
|
|
45 | (11) |
|
|
56 | (3) |
|
3 Nanometer CMOS LNAs for Mobile TV Receivers |
|
|
59 | (36) |
|
3.1 Requirements of the LNA in Mobile TV Receivers |
|
|
59 | (4) |
|
3.1.1 DVB-H RF Front-End Specifications |
|
|
60 | (1) |
|
3.1.2 DVB-H LNA Performance Requirements |
|
|
61 | (2) |
|
3.2 A 65 nm CMOS Wideband LNA Prototype |
|
|
63 | (18) |
|
|
64 | (7) |
|
3.2.2 DC Bias Generator Circuits |
|
|
71 | (6) |
|
3.2.3 Multi-Mode Test Buffer Circuits |
|
|
77 | (4) |
|
|
81 | (10) |
|
3.3.1 Test Environment Descriptions |
|
|
81 | (3) |
|
3.3.2 Measurement Results |
|
|
84 | (7) |
|
|
91 | (4) |
|
4 RF Attenuator Linearization Circuits |
|
|
95 | (36) |
|
4.1 The Necessity of RF Automatic Gain Control |
|
|
95 | (3) |
|
4.1.1 RF Gain Control in Mobile TV Receivers |
|
|
95 | (1) |
|
4.1.2 Gain Control Circuit Techniques |
|
|
96 | (2) |
|
4.2 RF Gain Control System Analysis |
|
|
98 | (5) |
|
4.2.1 Case One: DR Is Limited by the Clipping Level |
|
|
99 | (1) |
|
4.2.2 Case Two: DR Is Limited by the IIP3 Level |
|
|
100 | (3) |
|
4.3 Highly-Linear RF Front-End Architectures |
|
|
103 | (3) |
|
4.3.1 Linear RF Architectures |
|
|
103 | (1) |
|
|
104 | (2) |
|
4.4 Design of the Binary-Weighted RF Attenuator |
|
|
106 | (11) |
|
|
106 | (2) |
|
4.4.2 Binary-Weighted RF Attenuator Design |
|
|
108 | (4) |
|
4.4.3 Gain Control Logic Circuits |
|
|
112 | (5) |
|
4.5 Practical Considerations |
|
|
117 | (6) |
|
4.5.1 RF Attenuator & LNA Integration |
|
|
117 | (3) |
|
4.5.2 Package Bond Wire Coupling |
|
|
120 | (3) |
|
4.6 A 65 nm CMOS RF Passive Attenuator |
|
|
123 | (7) |
|
|
123 | (1) |
|
4.6.2 Measurement Results |
|
|
124 | (3) |
|
4.6.3 Comparison with Simulations |
|
|
127 | (3) |
|
|
130 | (1) |
|
5 Wide Dynamic Range Mobile TV Front-End Architecture |
|
|
131 | (8) |
|
5.1 Mobile TV Front-End with Automatic Gain Control |
|
|
131 | (4) |
|
5.1.1 Self-Contained RF AGC Control |
|
|
131 | (1) |
|
5.1.2 DVB-H RF Front-End with AGC Algorithm |
|
|
132 | (1) |
|
5.1.3 AGC RF Level Indicator Circuit |
|
|
133 | (2) |
|
5.2 A 65 nm CMOS RF Front-End Prototype |
|
|
135 | (3) |
|
|
135 | (1) |
|
5.2.2 Measurement Results of the AGC Test |
|
|
136 | (2) |
|
|
138 | (1) |
|
6 Summary and Conclusions |
|
|
139 | (6) |
|
6.1 Summary and Conclusions |
|
|
139 | (4) |
|
6.1.1 Digitally-Controlled Variable-Gain LNA |
|
|
139 | (1) |
|
6.1.2 Digitally-Programmed RF Passive Attenuator |
|
|
140 | (2) |
|
6.1.3 Wide Dynamic Range Mobile TV Front-End |
|
|
142 | (1) |
|
6.2 Further Research Areas |
|
|
143 | (2) |
|
|
143 | (1) |
|
|
144 | (1) |
References |
|
145 | (8) |
Index |
|
153 | (4) |
Author Biographies |
|
157 | |