Atjaunināt sīkdatņu piekrišanu

Nanometer CMOS RFICs for Mobile TV Applications 2010 ed. [Hardback]

  • Formāts: Hardback, 200 pages, height x width: 235x155 mm, weight: 940 g, XV, 200 p., 1 Hardback
  • Sērija : Analog Circuits and Signal Processing
  • Izdošanas datums: 10-Jun-2010
  • Izdevniecība: Springer
  • ISBN-10: 904818603X
  • ISBN-13: 9789048186037
  • Hardback
  • Cena: 91,53 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Standarta cena: 107,69 €
  • Ietaupiet 15%
  • Grāmatu piegādes laiks ir 3-4 nedēļas, ja grāmata ir uz vietas izdevniecības noliktavā. Ja izdevējam nepieciešams publicēt jaunu tirāžu, grāmatas piegāde var aizkavēties.
  • Daudzums:
  • Ielikt grozā
  • Piegādes laiks - 4-6 nedēļas
  • Pievienot vēlmju sarakstam
  • Formāts: Hardback, 200 pages, height x width: 235x155 mm, weight: 940 g, XV, 200 p., 1 Hardback
  • Sērija : Analog Circuits and Signal Processing
  • Izdošanas datums: 10-Jun-2010
  • Izdevniecība: Springer
  • ISBN-10: 904818603X
  • ISBN-13: 9789048186037
The RF front-end is the most fundamental building block of any wireless system. Nanometer CMOS RFICs for Mobile TV Applications brings together what IC design engineers need to know for the development of low-cost, wide-dynamic range RF front-ends for today's fastest growing communication markets. Drawing on their experience from both industry and academia, the authors use the emerging DVB-H mobile TV standard to provide readers with the step-by-step design progression of the described nanometer CMOS RFICs.

Nanometer CMOS RFICs for Mobile TV Applications focuses on how to break the trade-off between power consumption and performance (linearity and noise figure) by optimizing the mobile TV front-end dynamic range in three hierarchical levels: the intrinsic MOSFET level, the circuit level, and the architectural level. It begins by discussing the fundamental concepts of MOSFET dynamic range, including nonlinearity and noise. It then moves to the circuit level introducing the challenges associated with designing wide-dynamic range, variable-gain, broadband low-noise amplifiers (LNAs). The book gives a detailed analysis of a new noise-canceling technique that helps CMOSLNAs achieve a sub---2 dB wideband noise figure. Lastly, the book deals with the front-end dynamic range optimization process from the systems perspective by introducing the active and passive automatic gain control (AGC) mechanisms.

By describing in detail the physical realization of several 65 nm CMOS test chips, this book uncovers the practical challenges inherent in using nanometer CMOS technologies for RF circuit design and provides the solutions needed to overcome those challenges.
1 Introduction and Overview
1(14)
1.1 Mobile TV Architectures
3(6)
1.2 DVB-H Mobile TV System Definitions
9(3)
1.3 Scope of This Book
12(3)
2 Wideband CMOS LNA Design Techniques
15(44)
2.1 Dynamic Range Limits in MOSFETs
16(10)
2.1.1 The Noise Limit
16(3)
2.1.2 The Distortion Limit
19(6)
2.1.3 Dynamic Range Trade-offs in CMOS
25(1)
2.2 Traditional CMOS LNA Topologies
26(7)
2.2.1 R-CS Amplifier
26(2)
2.2.2 CG Amplifier
28(1)
2.2.3 SFB Amplifier
28(3)
2.2.4 L-Degenerate Amplifier
31(2)
2.3 Recent Trends in Wideband CMOS LNAs
33(10)
2.3.1 Current Reuse Amplifiers
34(2)
2.3.2 L-Degenerate Wideband Amplifiers
36(1)
2.3.3 Capacitive Cross-Coupled CG Amplifiers
37(2)
2.3.4 Noise and Distortion Cancelling Amplifiers
39(4)
2.4 Techniques to Improve the Wideband LNA Dynamic Range
43(13)
2.4.1 Wideband CMOS LNA State-of-the-Art
43(2)
2.4.2 New Low-Power Noise-Cancelling Technique
45(11)
2.5
Chapter Summary
56(3)
3 Nanometer CMOS LNAs for Mobile TV Receivers
59(36)
3.1 Requirements of the LNA in Mobile TV Receivers
59(4)
3.1.1 DVB-H RF Front-End Specifications
60(1)
3.1.2 DVB-H LNA Performance Requirements
61(2)
3.2 A 65 nm CMOS Wideband LNA Prototype
63(18)
3.2.1 LNA Core Circuit
64(7)
3.2.2 DC Bias Generator Circuits
71(6)
3.2.3 Multi-Mode Test Buffer Circuits
77(4)
3.3 Experimental Results
81(10)
3.3.1 Test Environment Descriptions
81(3)
3.3.2 Measurement Results
84(7)
3.4
Chapter Summary
91(4)
4 RF Attenuator Linearization Circuits
95(36)
4.1 The Necessity of RF Automatic Gain Control
95(3)
4.1.1 RF Gain Control in Mobile TV Receivers
95(1)
4.1.2 Gain Control Circuit Techniques
96(2)
4.2 RF Gain Control System Analysis
98(5)
4.2.1 Case One: DR Is Limited by the Clipping Level
99(1)
4.2.2 Case Two: DR Is Limited by the IIP3 Level
100(3)
4.3 Highly-Linear RF Front-End Architectures
103(3)
4.3.1 Linear RF Architectures
103(1)
4.3.2 Gain Step Size
104(2)
4.4 Design of the Binary-Weighted RF Attenuator
106(11)
4.4.1 Topology Evolution
106(2)
4.4.2 Binary-Weighted RF Attenuator Design
108(4)
4.4.3 Gain Control Logic Circuits
112(5)
4.5 Practical Considerations
117(6)
4.5.1 RF Attenuator & LNA Integration
117(3)
4.5.2 Package Bond Wire Coupling
120(3)
4.6 A 65 nm CMOS RF Passive Attenuator
123(7)
4.6.1 The Fabrication
123(1)
4.6.2 Measurement Results
124(3)
4.6.3 Comparison with Simulations
127(3)
4.7
Chapter Summary
130(1)
5 Wide Dynamic Range Mobile TV Front-End Architecture
131(8)
5.1 Mobile TV Front-End with Automatic Gain Control
131(4)
5.1.1 Self-Contained RF AGC Control
131(1)
5.1.2 DVB-H RF Front-End with AGC Algorithm
132(1)
5.1.3 AGC RF Level Indicator Circuit
133(2)
5.2 A 65 nm CMOS RF Front-End Prototype
135(3)
5.2.1 The Fabrication
135(1)
5.2.2 Measurement Results of the AGC Test
136(2)
5.3
Chapter Summary
138(1)
6 Summary and Conclusions
139(6)
6.1 Summary and Conclusions
139(4)
6.1.1 Digitally-Controlled Variable-Gain LNA
139(1)
6.1.2 Digitally-Programmed RF Passive Attenuator
140(2)
6.1.3 Wide Dynamic Range Mobile TV Front-End
142(1)
6.2 Further Research Areas
143(2)
6.2.1 System Studies
143(1)
6.2.2 Circuit Studies
144(1)
References 145(8)
Index 153(4)
Author Biographies 157