Atjaunināt sīkdatņu piekrišanu

E-grāmata: Nanoscopy and Multidimensional Optical Fluorescence Microscopy

Edited by
  • Formāts: 448 pages
  • Izdošanas datums: 26-Apr-2010
  • Izdevniecība: Chapman & Hall/CRC
  • Valoda: eng
  • ISBN-13: 9781040219973
  • Formāts - EPUB+DRM
  • Cena: 77,63 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: 448 pages
  • Izdošanas datums: 26-Apr-2010
  • Izdevniecība: Chapman & Hall/CRC
  • Valoda: eng
  • ISBN-13: 9781040219973

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

"Alberto Diaspro has been choreographing lights dance for over 20 years,

and in Nanoscopy and Multidimensional Optical Fluorescence Microscopy, he has assembled a diverse group of experts to explain the methods they use to coax light to reveal biologys secrets." From the Foreword by Daniel Evanko, editor, Nature Methods





Nanoscopy and Multidimensional Optical Fluorescence Microscopy demonstrates that the boundaries between sciences do blur at the bottom, especially those that might separate the optical work of physicists and the cellular work of microbiologists. In 18 chapters written by pioneering researchers, this work offers the first comprehensive and current documentation of the cutting-edge research being accomplished in a wide range of photonic devices with revolutionary application.





The highlight of the book is its coverage of optical nanoscopy and super-resolution microscopy. The rapid advances in this area over the past few years offer researchers in both photonics and molecular biologya wealth of accomplishment upon which they can build.





Offering a complete treatment of this emerging field, this volume:















Describes how scientists have exploited the properties of light and its fluorophore partners to overcome the resolution limit of conventional light microscopy





Delves into recent ways to minimize the photobleaching that has long hampered many methods including those that have the potential to capture previously unobtainable information on the movements of single molecules





Discusses the principles, benefits, and implementation of fluorescence correlation spectroscopy and related methods, which simplifies analysis by limiting light to stationary focal points in a sample





Considers the most basic as well as emerging methods for improving three-dimensional optical sectioning microscopy





Reviews the basics of FRET (

Recenzijas

This book certainly appears at the right time ... . The book should be useful for senior research students in optical microscopy and biophotonics. -Professor Min Gu, Swinburne University of Technology, Melbourne, Australia A very useful book for the microscopy field. Alberto Diaspro has done a great job as editor, and I'm sure this book will be appreciated by its readers. -Professor Peter Saggau, Baylor College of Medicine, Texas, USA ... with over sixty contributing authors, this elegant book should impress many optical manufacturers ... -Optical World, August 2010

Foreword ix
Preface xiii
Editor xv
Contributors xvii
1 Sted Microscopy with Compact Light Sources
1(1)
Lars Kastrup
Dominik Wildanger
Brian Rankin
Stefan W. Hell
1.1 Introduction
1(1)
1.2 Far-FieldFluorescence Nanoscopy
2(3)
1.3 New Light Sources
5
References
11
2 Nonlinear Fluorescence Imaging by Saturated Excitation
2(1)
Nicholas I. Smith
Shogo Kawano
Masahito Yamanaka
Katsumasa Fujita
2.1 Introduction: Methods to Improve Fluorescence Microscopy Resolution
1(2)
2.2 Saturated Excitation (SAX) Microscopy for High-Resolution Fluorescence Imaging
3(10)
Overview and Principles of SAX Microscopy
Imaging Properties and Effective Point Spread Function of SAX Microscopy
Confirmation of the Onset and Nature of the Saturation Nonlinearity Effect
High-Resolution Saturated Fluorescence Microscopy of Biological Samples
2.3 Discussion and Perspectives
13
References
15
3 Far-Field Fluorescence Microscopy of Cellular Structures at Molecular Optical Resolution
3(1)
Christoph Cremer
Alexa von Ketteler
Paul Lemmer
Rainer Kaufmann
Yanina Weiland
Patrick Mueller
M. Hausmann
Manuel Gunkel
Thomas Ruckelshausen
David Baddeley
Roman Amberger
3.1 Introduction
2(2)
The Abbe-Limit
Light Optical Analysis of Biostructures by Enhanced Resolution
Topics Covered
3.2 Approaches to Superresolution of Fluorescence-Labeled Cellular Nanostructures A: Focused and Structured Illumination
4(4)
Superresolution by Focused Illumination I: Confocal Laser Scanning 4Pi-Microscopy
Superresolution by Focused Illumination II: Stimulated Emission Depletion Microscopy
Superresolution by Structured Illumination Microscopy
3.3 Approaches to Superresolution of Fluorescence-Labeled Cellular Nanostructures B: Basic Principles of Spectrally Assigned Localization Microscopy
8(10)
Basic Ideas
Basic Experiments
Virtual SPDM I: SPDM with a Small Number of Spectral Signatures
Virtual SPDM II: SPDM with a Large Number of Spectral Signatures
"Proof-of-Principle" SPDM Experiments
Principles of Experimental SPDM/SALM with a Large Number of Spectral Signatures
3.4 Approaches to Superresolution of Fluorescence-Labeled Cellular Nanostructures C: Experimental SALM/SPDM with a Large Number of Spectral Signatures
18(10)
Microscope Setup
Software for Data Registration and Evaluation
Specimen Preparation
Experimental SPDM Phymod Nanoimaging of the Distribution of emGFP-Tagged Tubulin Molecules in Human Fibroblast Nuclei
Experimental SPDM phymod Nanoimaging of GFP-Labeled Histone Distribution in Human Cell Nuclei
3D-Nanoimaging by Combination of SPDM and SMI Microscopy
3.5 Discussion
28
Perspectives for Nanostructure Analysis in Fixed Specimens
Perspectives for In Vivo Imaging at the Nanometer Scale
Perspectives for Single Molecule Counting
Acknowledgments
31(1)
References
31
4 Fluorescence Microscopy with Extended Depth of Field
4(1)
Kai Wicker
Rainer Heintzmann
4.1 Introduction
1(1)
4.2 Software-Based EDF
2(1)
4.3 Optical Methods
3(11)
Extended Focus PSFs
Excitation-Based Systems
Detection-Based Methods
4.4 Applications and Future Perspectives
14
References
15
5 Single Particle Tracking
5(1)
Kevin Braeckmans
Dries Vercauteren
Jo Demeester
Stefaan C. De Smedt
5.1 Introduction
1(1)
5.2 SPT Instrumentation
2(2)
5.3 Calculating Trajectories of Individual Particles
4(5)
Particle Localization by Image Processing
Building Trajectories
5.4 Trajectory Analysis
9(4)
5.5 Applications
13(1)
5.6 Conclusions and Perspectives
13
References
14
6 Fluorescence Correlation Spectroscopy
6(1)
Xianke Shi
Thorsten Wohland
6.1 Introduction
1(1)
6.2 Background
2(13)
What is a Correlation?
How Are Correlation Functions Calculated from Experiments?
Correlator Schemes
6.3 Instrumentation
15(3)
6.4 State of the Art
18(7)
FCS with Confocal Illumination
Fluorescence Correlation Microscopy
Two-Photon Excitation Fluorescence Correlation Spectroscopy
Total Internal Reflection Flurescence Correlation Spectroscopy
Fluorescence Cross-Correlation Spectroscopy
Scanning Fluorescence Correlation Spectroscopy
CCD-Based Fluorescence Correlation Spectroscopy
Computational Advances
6.5 Summary
25(1)
6.6 Future Perspectives
26
Acknowledgments
26(1)
References
26
7 Two-Photon Excitation Microscopy: A Superb Wizard for Fluorescence Imaging
7(1)
Francesca Cella
Alberto Diaspro
7.1 Introduction
1(1)
7.2 Basic Principles
1(4)
Two-Photon Excitation Process
Two-Photon Point-Spread Function
7.3 Probes and Architecture Considerations
5(3)
2PE Fluorescent Probes
Design Considerations of a 2PE Set Up
7.4 Applications and Advantages
8(2)
Applications
Advantages due to Excitation Localization
7.5 Conclusions
10
References
11
8 Photobleaching Minization in Single-and Multi-Photon Fluorescence Imaging
8(1)
Partha Pratim Mondal
Paolo Bianchini
Zeno Lavagnino
Alberto Diaspro
8.1 Introduction
1(1)
8.2 Background
2(1)
8.3 Single-and Multi-Photon Excitation
3(4)
Zero-Order Coefficient
First-Order Coefficient
Second-Order Coefficient
Cross Section for Single-and Multi-Photon Excitation
8.4 Photobleaching: The Mechanism
7(4)
8.5 Photobleaching Minimization Techniques
11
Triplet State Depletion Method for Single-and Multi-Photon Process
Controlled Light Exposure Microscopy (CLEM)
Photobleaching Reduction by Dark State Relaxation
Quantum Light Microscopy
Appendix
21(2)
References
23
9 Applications of Second Harmonic Generation Imaging Microscopy
9(1)
Paolo Bianchini
Alberto Diaspro
9.1 Introduction
1(1)
9.2 Theoretical and Physical Considerations on Second Harmonic Generation
2(2)
9.3 SHG Imaging Modes and Microscope Design
4(3)
9.4 Biological Observations of SHG within Tissues
7(4)
9.5 Summary
11
References
12
10 Green Fluorescent Proteins as Intracellular pH Indicators
10(1)
Fabio Beltram
Ranieri Bizzarri
Stefano Luin
Michela Serresi
10.1 Introduction
1(2)
10.2 pH-Dependent Properties of Green Fluorescent Proteins
3(6)
Protein Structure and Folding
The Basis of pH Sensing
Kinetics of GFP protonation and Resolution of pH1 Imaging Measurements
10.3 GFP-Based pH Indicators
9(8)
Ratiometric Fluorescent Indicators
GFP-Based pH Indicators Applied In Vivo
pHi Measurement: Instrumentation and Methods
10.4 Summary and Future Perspectives
17
Acknowledgments
18(1)
References
18
11 Fluorescence Photoactivation Localization Microscopy
11(1)
Manasa V. Gudheti
Travis J. Gould
Samuel T. Hess
11.1 Introduction
1(1)
11.2 Background
1(4)
Definition of Technical Terms
History
11.3 Presentation of the Method
5(14)
Theory
Materials
Methods
11.4 Critical Discussion
19(2)
Information That Can Be Obtained with FPALM
Microscope Position Stability and Drift
11.5 Summary
21(1)
11.6 Future Perspective
21
Acknowledgments
21(1)
References
22
12 Molecular Resolution of Cellular Biochemistry and Physiology by FRET/FLIM
12(1)
Fred S. Wouters
Gertrude Bunt
12.1 Introduction
1(1)
12.2 Background
2(4)
FRET
12.3 Presentation of State of the Art
6(13)
Intensity-Based Measurements: Intramolecular FRET
Intensity-Based Measurements: Intermolecular FRET
FRET Measurements from Fluorescence Kinetics
12.4 Critical Discussion
19(2)
Shortcomings and Possible Pitfalls of FRET
12.5 Summary
21(1)
12.6 Future Perspective
21
Instrumentation
Labels and Sensing Paradigms
Acknowledgment
23(1)
References
23
13 FRET-Based Determination of Protein Complex Structure at Nanometer Length Scale in Living Cells
13(1)
Valerica Raicu
13.1 Introduction
1(1)
13.2 Nomenclature and Definitions of the Physical Quantities
2(4)
Fluorescence and FRET in Dimeric Complexes
RET Efficiency in Oligomeric Complexes of Arbitrary Size and Geometry
13.3 Determination of FRET Efficiency from Fluorescence Intensity Measurements
6(5)
Fluorescence Intensities at Fixed Emission Wavelengths
Spectral Decomposition of Intensities Measured at Multiple Emission Wavelengths
Instrumentation for FRET Imaging with Single-Molecule or Molecular Complex Sensitivity
13.4 Determination of Protein Structure In Vivo
11(3)
Experimental Investigations
Determination of the Protein Complex Structure from Apparent FRET Efficiency
Comparison of Pixel-Level Spectrally Resolved FRET with Other Methods
Acknowledgments
16(1)
References
16
14 Automation in Multidimensional Fluorescence Microscopy: Novel Instrumentation and Applications in Biomedical Research
14(1)
Mario Faretta
14.1 Introduction
1(2)
14.2 Instrumentation for High-Throughput/Content Microscopy
3(10)
Image Screening Microscopy
Confocal High-Content Screening Microscopy
Flow Cytometry and Laser-Scanning Cytometry
14.3 Automated Image Analysis in High Content Microscopy
13(2)
14.4 Applications in Biomedical and Oncological Research
15(2)
14.5 Future Perspectives
17
Acknowledgment
17(1)
References
18
15 Optical Manipulation, Photonic Devices, and Their Use in Microscopy
15(1)
G. Cojoc
C. Liberale
R. Tallerico
A. Puija
M. Moretti
F. Mecarini
G. Das
P. Candeloro
F. De Angelis
E. Di Fabrizio
15.1 Introduction
1(1)
15.2 Fluorescence Microscopy Combined with Optical Tweezers
2(10)
Trap Stability
Optical Tweezers Setup
Optical Tweezers Calibration and Force Measurement
Fluorescence Microscopy in Beads and DNA Optical Manipulation
Confocal Microscopy Combined with Optical Tweezers
15.3 Fiber-Optic Tweezers
12(6)
Calculations
Probe Fabrication and Experimental Results
15.4 Plasmonic Devices
18(10)
Device Fabrication
Theoretical Simulation
Experimental Setup and Material Deposition
Raman Scattering Measurements
15.5 Summary
28
Acknowledgment
28(1)
References
28
16 Optical Tweezers Microscopy: Piconewton Forces in Cell and Molecular Biology
16(1)
Francesco Difato
Enrico Ferrari
Rajesh Shahapure
Vincent Torre
Dan Cojoc
16.1 Introduction
1(2)
16.2 Optical Trapping Principle and Setups
3(3)
16.3 Optical Trap Calibration
6(2)
16.4 Optical Tweezers versus Fluorescence Microscopy
8(2)
16.5 Optical Tweezers in Biology
10(7)
References
14(3)
17 In Vivo Spectroscopic Imaging of Biological Membranes and Surface Imaiging for High-Throughput Screening
17(1)
Jo L. Richens
Peter Weightman
Bill L. Barnes
Paul O'Shea
17.1 Introduction
1(2)
17.2 Background: Major Cell Biological Aims That Require Imaging Solutions
3(2)
17.3 Surface Imaging Techniques
5(1)
17.4 Reflection Anisotropy Spectroscopy and Reflection Anisotropy Microscopy
6(1)
17.5 Plasmonics
7(3)
17.6 Conclusions: Ultrafast, Ultrasensitive, Super-Resolution, Label-Free Imaging Applications
10(8)
Acknowledgments
11(1)
References
11(7)
18 Near-Field Optical Microscopy: Insight on the Nanometer-Scale Organization of the Cell Membrane
18
Davide Normanno
Thomas van Zanten
Maria F. Garcia-Parajo
18.1 Near-Field Scanning Optical Microscopy
1(10)
Modern Microscopy Pushes the Resolution
A Scan through History
The Near-Field Approach
The NSOM Head and the Feedback Mechanism
Getting an NSOM Image Requires the Right Probe
A Bio-NSOM
18.2 NSOM in the Biological Domain
11(6)
Artificial Lipid Mono/Bilayers as Test Models
Protein Organization on the Cell Membrane
18.3 Future Perspectives in Near-Field Optical Microscopy
17
Exploiting the Power of Optical Nanoantennas
Acknowledgments
21(1)
References
21
Index 1
Alberto Diaspro