Atjaunināt sīkdatņu piekrišanu

E-grāmata: Natech Risk Assessment and Management: Reducing the Risk of Natural-Hazard Impact on Hazardous Installations

(Disaster Prevention Research Institute, Kyoto University, Japan), (Department of Civil, Chemical, Environmental, and Materia), (European Commission, Joint Research Centre, Institute for the Protection and Security of the Citizen, Italy)
  • Formāts: EPUB+DRM
  • Izdošanas datums: 01-Nov-2016
  • Izdevniecība: Elsevier Science Publishing Co Inc
  • Valoda: eng
  • ISBN-13: 9780128038796
Citas grāmatas par šo tēmu:
  • Formāts - EPUB+DRM
  • Cena: 111,77 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: EPUB+DRM
  • Izdošanas datums: 01-Nov-2016
  • Izdevniecība: Elsevier Science Publishing Co Inc
  • Valoda: eng
  • ISBN-13: 9780128038796
Citas grāmatas par šo tēmu:

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

Natech Risk Assessment and Management: Reducing the Risk of Natural-Hazard Impact on Hazardous Installations covers the entire spectrum of issues pertinent to Natech risk assessment and management. After a thorough introduction of the topic that includes definitions of terms, authors Krausmann, Cruz, and Salzano discuss various examples of international frameworks and provide a detailed view of the implementation of Natech Risk Management in the EU and OECD.

There is a dedicated chapter on natural-hazard prediction and measurement from an engineering perspective, as well as a consideration of the impact of climate change on Natech risk. The authors also discuss selected Natech accidents, including recent examples, and provide specific ‘lessons learned’ from each, as well as an analysis of all essential elements of Natech risk assessment, such as plant layout, substance hazards, and equipment vulnerability.

The final section of the book is dedicated to the reduction of Natech risk, including structural and organizational prevention and mitigation measures, as well as early warning issues and emergency foreword planning.

  • Teaches chemical engineers and safety managers how to safeguard chemical processing plants and pipelines against natural disasters
  • Includes international regulations and explains how to conduct a natural hazards risk assessment, both of which are supported by examples and case studies
  • Discusses a broad range of hazards and the multidisciplinary aspects of risk assessment in a detailed and accessible style

Recenzijas

"...much-needed and timely as it presents the whole spectrum of issues relevant for the assessment, management, as well as the reduction of Natech risks in a coherent way...a must have for all disaster risk experts in the field."--IDRiM Newsletter

Papildus informācija

A comprehensive resource on Natech Risk assessment, how to predict natural hazards, and how to safeguard processing plants from natural disasters
List of Contributors
xi
About the Authors xiii
Chapter 1 Introduction
1(2)
E. Krausmann
A.M. Cruz
E. Salzano
Chapter 2 Past Natech Events
3(30)
E. Krausmann
A.M. Cruz
2.1 Characteristics of Natech Events
3(1)
2.2 Kocaeli Earthquake, 1999, Turkey
4(7)
2.2.1 Fires at a Refinery in Izmit Bay
6(3)
2.2.2 Hazardous-Materials Releases at an Acrylic Fiber Plant
9(2)
2.3 Tohoku Earthquake and Tsunami, 2011, Japan
11(8)
2.3.1 Fires and Explosions at an LPG Storage Tank Farm in Tokyo Bay
12(4)
2.3.2 Fires at a Refinery in the Sendai Port Area
16(3)
2.4 San Jacinto River Flood, 1994, United States
19(2)
2.4.1 Accident Sequence and Emergency Response
19(1)
2.4.2 Consequences
20(1)
2.4.3 Lessons Learned
21(1)
2.5 Hurricanes Katrina and Rita, 2005, United States
21(4)
2.5.1 Accident Sequence and Emergency Response
22(2)
2.5.2 Consequences
24(1)
2.5.3 Lessons Learned
25(1)
2.6 Milford Haven Thunderstorm, 1994, United Kingdom
25(8)
2.6.1 Accident Sequence and Emergency Response
26(1)
2.6.2 Consequences
27(2)
2.6.3 Lessons Learned
29(1)
References
29(4)
Chapter 3 Lessons Learned From Natech Events
33(20)
E. Krausmann
E. Salzano
3.1 Data Sources and Quality
33(1)
3.2 General Lessons Learned
34(2)
3.3 Earthquakes
36(2)
3.4 Tsunami
38(2)
3.5 Floods
40(3)
3.6 Storms
43(2)
3.7 Lightning
45(2)
3.8 Others
47(6)
3.8.1 Extreme Temperatures
47(1)
3.8.2 Volcanoes
48(1)
References
49(4)
Chapter 4 Status of Natech Risk Management
53(16)
E. Krausmann
R. Fendler
S. Averous-Monnery
A.M. Cruz
N. Koto
4.1 Regulatory Frameworks
53(3)
4.1.1 European Union
53(1)
4.1.2 United States of America
54(1)
4.1.3 Japan
55(1)
4.1.4 Colombia
56(1)
4.2 Implementation of Natech Risk Reduction
56(5)
4.2.1 European Union
56(2)
4.2.2 Germany
58(3)
4.3 International Activities
61(8)
4.3.1 OECD Guiding Principles for Chemical Accident Prevention, Preparedness and Response
61(2)
4.3.2 The UNEP APELL Program
63(2)
4.3.3 Sendai Framework for Disaster Risk Reduction 2015--30
65(1)
References
66(3)
Chapter 5 Natural Hazard Characterization
69(22)
G. Lanzano
A. Basco
A.M. Pellegrino
E. Salzano
5.1 Introduction
69(2)
5.2 Prediction and Measurement
71(15)
5.2.1 Earthquake
71(5)
5.2.2 Tsunami
76(2)
5.2.3 Floods
78(8)
5.3 Limitations, Uncertainties, and Future Impacts of Climate Change
86(5)
References
87(4)
Chapter 6 Technological Hazard Characterization
91(14)
V. Cozzani
E. Salzano
6.1 Introduction
91(1)
6.2 Substance Hazard
92(2)
6.3 Physical State of the Released Substance
94(2)
6.4 Equipment Vulnerability
96(6)
6.4.1 Atmospheric Equipment
96(1)
6.4.2 Pressurized Equipment
97(1)
6.4.3 Pipelines
97(2)
6.4.4 Hazard Classification Based on Structural Features and Hazard of the Secondary Scenario
99(3)
6.5 Conclusions
102(3)
References
102(3)
Chapter 7 Natech Risk and Its Assessment
105(14)
E. Krausmann
7.1 General Considerations
105(1)
7.2 The Industrial Risk-Assessment Process
106(2)
7.3 The Natech Risk-Assessment Process
108(11)
7.3.1 Input
109(1)
7.3.2 Hazard Identification and Consequence Analysis
110(5)
7.3.3 Risk Integration and Evaluation
115(2)
References
117(2)
Chapter 8 Qualitative and Semiquantitative Methods for Natech Risk Assessment
119(24)
E. Krausmann
K.-E. Koppke
R. Fendler
A.M. Cruz
S. Girgin
8.1 RAPID-N
119(7)
8.1.1 Scientific Module
120(1)
8.1.2 Industrial Plants and Units Module
121(1)
8.1.3 Natural-Hazards Module
121(2)
8.1.4 Natech Risk-Analysis Module
123(3)
8.1.5 Outlook
126(1)
8.2 PANR
126(2)
8.3 TRAS 310 and TRAS 320
128(12)
8.3.1 TRAS 310 "Precautions and Measures Against the Hazard Sources Precipitation and Flooding"
128(10)
8.3.2 TRAS 320 "Precautions and Measures Against the Hazard Sources Wind, Snow Loads and Ice Loads"
138(1)
8.3.3 Summary
139(1)
8.4 Other Methodologies
140(3)
References
141(2)
Chapter 9 Quantitative Methods for Natech Risk Assessment
143(14)
V. Cozzani
E. Salzano
9.1 ARIPAR
143(9)
9.1.1 Framework of the ARIPAR-GIS Natech Module
143(2)
9.1.2 The ARIPAR-GIS Software
145(1)
9.1.3 The Natech Package of the ARIPAR-GIS Software
145(2)
9.1.4 Input Data and Calculation Procedure
147(1)
9.1.5 Equipment Vulnerability Models
148(1)
9.1.6 Output
149(3)
9.2 RISKCURVES
152(5)
References
154(3)
Chapter 10 Case-Study Application I: RAPID-N
157(20)
S. Girgin
E. Krausmann
10.1 Earthquake Scenario
157(2)
10.2 Chemical Facility Description
159(3)
10.3 Natech Risk Analysis
162(10)
10.3.1 Damage Analysis
162(4)
10.3.2 Single Unit Containing a Flammable Substance
166(2)
10.3.3 Single Unit Containing a Toxic Substance
168(2)
10.3.4 Multiple Units
170(2)
10.4 Conclusions
172(5)
References
173(4)
Chapter 11 Case-Study Application II: ARIPAR-GIS
177(14)
G. Antonioni
A. Necci
G. Spadoni
V. Cozzani
11.1 Introduction
177(1)
11.2 Case study 1: Natech Scenarios Triggered by Earthquakes
177(2)
11.3 Case study 2: Natech Scenarios Triggered by Floods
179(9)
11.3.1 Layout and Vessel Features
179(1)
11.3.2 Workers and Surrounding Population
179(4)
11.3.3 Flood Scenarios
183(1)
11.3.4 Individual and Societal Risk Calculated for Conventional Scenarios
183(1)
11.3.5 Individual and Societal Risk Including Flood-Induced Scenarios
184(4)
11.4 Results of the Case-Study Analyses
188(3)
References
188(3)
Chapter 12 Case Study Application III: RISKCURVES
191(14)
A. Basco
I. Raben
J. Reinders
E. Salzano
12.1 Introduction
191(1)
12.2 Methodology
191(2)
12.3 Description of the Case Study
193(5)
12.4 Results and Discussion
198(2)
12.5 Conclusions
200(5)
References
203(2)
Chapter 13 Reducing Natech Risk: Structural Measures
205(22)
A.M. Cruz
E. Krausmann
N. Kato
S. Girgin
13.1 Introduction
205(1)
13.2 Prevention Measures
206(14)
13.2.1 Earthquakes
206(5)
13.2.2 Tsunami and Coastal Storm Surge
211(4)
13.2.3 Floods
215(2)
13.2.4 High Winds
217(1)
13.2.5 Lightning
218(2)
13.3 Mitigation Measures
220(7)
References
222(5)
Chapter 14 Reducing Natech Risk: Organizational Measures
227(10)
E. Krausmann
A.M. Cruz
E. Salzano
14.1 Organizational Risk-Reduction Measures
227(1)
14.2 Natech Risk Governance
227(2)
14.3 Prevention and Mitigation
229(2)
14.4 Emergency-Response Planning
231(2)
14.5 Early Warning
233(4)
References
234(3)
Chapter 15 Recommendations and Outlook
237(4)
E. Krausmann
A.M. Cruz
E. Salzano
Glossary 241(4)
Index 245
Elisabeth Krausmann is a Principal Scientist with the European Commissions Joint Research Centre (JRC). Having a Ph.D. in nuclear physics, her research experience includes risk analysis of natural-hazard impact on hazardous installations, nuclear-reactor safety, severe-accident management and consequence analysis. Since 2006 she leads the Natech activity at the JRC which focuses on the development of methodologies and tools for Natech risk analysis and mapping, accident analysis and lessons learning, and capacity building for Natech risk reduction. She is a Steering Group member of the OECD WGCAs Natech project. Ana Maria Cruz is a Professor of Disaster Risk Management at Kyoto University. She received a Chemical Engineering degree in 1987, and worked in industry for over 10 yrs. She later obtained a MSc. in Applied Development and a Ph.D. in Environmental Engineering from Tulane University where she pioneered research on Natechs from 1999. She has worked in the private and public sectors, in academia and with government at the local and international levels in four continents. Her research interests include area-wide Natech risk management, risk perception and protective behavior in communities subject to Natech and climate change impacts. She has published over 40 journal articles and several book chapters, and serves as an Editor for the Journal of the International Society for Integrated Disaster Risk Management. Ernesto Salzano is Associate Professor at the University of Bologna since 2015. His main research activities are in the field of industrial safety. In particular, he studies risks related to the use of flammable substances and risks to critical infrastructures from external hazards, such as Natech risks, domino effects from explosions, and security risks due to intentional acts (terrorist attacks and sabotage). From 1995 2015 Prof. Salzano was a researcher at the Institute for Research on Combustion at the Italian National Research Council where he was in charge of the laboratory for studies on substance explosivity and flammability at high pressure and temperature.