Atjaunināt sīkdatņu piekrišanu

E-grāmata: Native Macromolecule-based 3d Tissues Repair

Edited by (Shanghai Jiao Tong Univ, China)
  • Formāts: 328 pages
  • Izdošanas datums: 19-Mar-2014
  • Izdevniecība: World Scientific Publishing Co Pte Ltd
  • Valoda: eng
  • ISBN-13: 9789814551946
Citas grāmatas par šo tēmu:
  • Formāts - PDF+DRM
  • Cena: 36,07 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Bibliotēkām
  • Formāts: 328 pages
  • Izdošanas datums: 19-Mar-2014
  • Izdevniecība: World Scientific Publishing Co Pte Ltd
  • Valoda: eng
  • ISBN-13: 9789814551946
Citas grāmatas par šo tēmu:

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

Scientists in biology, medicine, and chemistry review recent research into using natural polymers in regenerative medicine. They cover native polymer-based three-dimensional substitutes in cardiovascular tissue engineering, nerve regeneration, cartilage repair, bone repair, and plastic surgery; nanofabrication techniques in native polymer-based three-dimensional substitutes; and native polymer-based three-dimensional substitutes as alternatives with slow-release functions. The material is intended to inform graduate students and scientists and encourage them to enter the field. Annotation ©2014 Ringgold, Inc., Portland, OR (protoview.com)

With the increasing worldwide prevalence of tissue damage, there is an urgent, growing demand for tissue engineering materials to mimic autologous tissue for surgical repair. Many attempts have been made to produce long-lasting, biocompatible implants. To overcome the mechanical and biological limitations of synthetic implants, the development of native macromolecule-based 3D substitutes as alternatives has been the latest focus. Advances in nanofabrication and controlled-release technology have vastly improved the potential of such 3D substitutes in influencing cell and tissue performance. This book is an overview of the current state of knowledge in the field of native macromolecule-based 3D substitutes for the repair of several tissue types, including bone, cartilage, vascular, and many more.
Preface xiii
Chapter 1 Native Polymer-based 3D Substitutes in Cardiovascular Tissue Engineering
1(34)
Hua-Jie Wang
Ying Cao
1 Introduction
1(1)
2 Native Polymer-based Tissue-Engineered Heart Valves
2(7)
2.1 Collagen
5(1)
2.2 Fibrin
5(1)
2.3 Hyaluronic acid
6(2)
2.4 Other native polymers
8(1)
3 Native Polymer-based Tissue-Engineered Blood Vessels
9(7)
3.1 Collagen
10(1)
3.2 Fibrin
11(1)
3.3 Elastin
12(1)
3.4 Silk fibroin
13(1)
3.5 Bacteria cellulose
14(1)
3.6 Other native polymers
15(1)
4 Native Polymer-based Tissue-Engineered Myocardium
16(4)
4.1 In-situ myocardial tissue engineering
16(3)
4.2 In-vitro engineering of myocardium substitutes
19(1)
5 Applications of Composite Materials in Cardiovascular Tissue Engineering
20(2)
6 Summary and Future Directions
22(13)
References
22(13)
Chapter 2 Native Polymer-based 3D Substitutes for Nerve Regeneration
35(40)
Guo-Wu Wang
Jin-Ye Wang
1 Introduction
35(2)
2 Design of Ideal Nerve Conduits
37(1)
3 The Application of Bioengineered Natural Materials in Nerve Conduits
38(23)
3.1 Extracellular matrix components
38(1)
3.1.1 Bioengineered collagen and its derivatives
39(1)
3.1.1.1 Introduction
39(1)
3.1.1.2 Category and characteristic
40(1)
3.1.2 Bioengineered laminin and its derivatives
41(1)
3.1.2.1 Introduction
41(1)
3.1.2.2 Category and characteristic
42(1)
3.1.3 Bioengineered fibronectin & fibrin and their derivatives
43(1)
3.1.3.1 Introduction
43(1)
3.1.3.2 Category and characteristic
44(4)
3.2 Bioengineered gelatin and its derivatives
48(1)
3.2.1 Introduction
48(1)
3.2.2 Category and characteristic
49(1)
3.3 Bioengineered chitosan and its derivatives
49(1)
3.3.1 Introduction
49(3)
3.3.2 Category and characteristic
52(3)
3.4 Bioengineered silk and its derivatives
55(1)
3.4.1 Introduction
55(1)
3.4.2 Category and characteristic
56(2)
3.5 Bioengineered alginate and its derivatives
58(1)
3.5.1 Introduction
58(2)
3.5.2 Category and characteristic
60(1)
4 Conclusions and Future Perspective
61(14)
References
62(13)
Chapter 3 Native Polymer-Based 3D Substitutes for Cartilage Repair
75(70)
Huitang Xia
Tu Liu
Ran Tao
Chunlei Miao
Shengjian Tang
Biaobing Yang
Guangdong Zhou
1 Introduction
75(2)
2 The Theory Basis of Native Polymer-Based 3D Substitutes for Cartilage Repair
77(14)
2.1 Native polymers mimic the molecular composition of cartilage ECM
78(1)
2.1.1 Molecular composition of cartilage ECM
78(1)
2.1.2 Native polymers mimic molecular composition of cartilage ECM
79(2)
2.2 Native polymers mimic the structure of cartilage ECM
81(1)
2.2.1 Structure of cartilage ECM
81(1)
2.2.2 Native polymers mimic the structure of cartilage ECM
82(2)
2.3 Native polymers mimic the function of cartilage ECM
84(1)
2.3.1 Regulation of cell fate by native adhesion ligand
84(1)
2.3.2 Regulation of chondrogenic differentiation and phenotypic maintenance
85(1)
2.3.3 Controlled delivery of biochemical factors
86(1)
2.3.4 Regulation of mechanical properties
87(2)
2.3.5 Integration of neocartilage with host tissues
89(2)
3 The Main Native Polymers for Cartilage Regeneration
91(28)
3.1 Acellular matrix
91(1)
3.1.1 Properties of acellular matrix for cartilage regeneration
92(1)
3.1.2 A cellular matrix scaffolds for cartilage regeneration
93(2)
3.2 Collagen
95(1)
3.2.1 Properties of collagen for cartilage engineering
96(5)
3.2.2 Collagen scaffolds for cartilage regeneration
101(1)
3.3 Chitosan
102(1)
3.3.1 Properties of chitosan for cartilage regneration
103(2)
3.3.2 Chitosan-based scaffolds for cartilage regeneration
105(1)
3.3.2.1 Modification of chitosan
105(2)
3.3.2.2 Combination of chitosan with other materials
107(1)
3.3.2.3 Chitosan nanofibers
107(2)
3.4 Hyaluronic acid
109(1)
3.4.1 Properties of hyaluronic acid for cartilage regeneration
110(2)
3.4.2 Hyaluronic acid-based scaffolds for cartilage regeneration
112(2)
3.5 Other native polymers for cartilage regeneration
114(1)
3.5.1 Silk
114(1)
3.5.2 Fibrin
115(2)
3.5.3 Alginate
117(1)
3.5.4 Agarose
118(1)
4 Cartilage Regeneration and Repair Based on Native Polymers
119(26)
4.1 Cartilage regeneration based on native polymers
119(1)
4.1.1 Collagen
119(1)
4.1.2 Gelatin
120(1)
4.1.3 Fibrin
120(1)
4.1.4 Alginate
121(2)
4.1.5 Remarks and future directions
123(1)
4.2 Cartilage repair based on native polymers
123(1)
4.2.1 Articular cartilage repair based on native polymers
123(2)
4.2.2 Tracheal cartilage repair based on native polymers
125(2)
4.3 Challenges in cartilage repair
127(1)
4.3.1 Tissue integration
127(1)
4.3.2 The scale of cartilage defect repair
127(1)
4.3.3 Defect design in animal models
128(1)
4.4 Future directions in native polymer-based scaffolds and cartilage regeneration
129(2)
References
131(14)
Chapter 4 Native Polymer-based 3D Substitutes for Bone Repair
145(40)
Yan Huang
Kerong Dai
Xiaoling Zhang
1 Introduction
145(3)
2 Proteins
148(9)
2.1 Collagen
148(4)
2.2 Silk
152(4)
2.3 Zein
156(1)
3 Polysaccharides
157(14)
3.1 Chitosan
159(2)
3.2 Hyaluronic acid
161(2)
3.3 Alginate
163(1)
3.4 Starch-based material
164(2)
3.5 Cellulose
166(4)
3.6 Dextran
170(1)
4 Microbial Origin Polyesters
171(14)
Acknowledgments
174(1)
References
174(11)
Chapter 5 Native Polymer-based 3D Substitutes in Plastic Surgery
185(36)
Jing Wang
Xiaoling Zhang
Qingfeng Li
1 Bioengineered Hyaluronic Acid and its Derivatives
187(3)
1.1 Introduction
187(1)
1.2 Category and characteristic
188(2)
2 Bioengineered Collagen and Its Derivatives
190(6)
2.1 Introduction
190(1)
2.2 Category and characteristic
191(5)
3 Bioengineered Poly-L-Lactic Acid (PLLA)
196(1)
4 Clinical Indications
197(11)
4.1 Rhinoplasty
198(1)
4.1.1 Anatomy
198(1)
4.1.2 Clinical usage
199(1)
4.2 Nasolabial fold
200(1)
4.2.1 Anatomy
200(2)
4.2.2 Clinical usage
202(1)
4.3 Glabellar rhytides
203(1)
4.3.1 Anatomy
203(1)
4.3.2 Clinical usage
204(1)
4.4 Lip enhancement
204(2)
4.5 Nasojugal grooves (tear troughs)
206(1)
4.5.1 Anatomy
206(1)
4.5.2 Clinical usage
207(1)
5 Injection Techniques
208(3)
5.1 Tunneling technique
209(1)
5.2 Serial puncture
210(1)
6 Complications
211(2)
7 Summary
213(8)
Reference
213(8)
Chapter 6 Nanofabrication Techniques in Native Polymer-based 3D Substitutes
221(36)
Yangchao Luo
Qin Wang
1 Introduction
221(1)
2 Electrospinning
222(11)
2.1 Introduction of electrospinning technique
222(1)
2.2 Modifications in electrospinning
223(5)
2.3 Parameters affecting production of electrospin nanofibers
228(1)
2.4 Applications of native polymer-based electrospinning technique
229(3)
2.5 Challenges in electrospinning technique
232(1)
3 Self-assembly
233(9)
3.1 Introduction of self-assembly technique
233(1)
3.2 Parameters affecting production of self-assembly nanostructures
234(2)
3.3 Applications of native polymer-based self-assembly technique
236(5)
3.4 Challenges of self-assembly technique
241(1)
4 Phase Separation
242(6)
4.1 Introduction of phase separation technique
242(1)
4.2 Parameters affecting production of phase separation nanostructures
242(3)
4.3 Applications of native polymer-based phase separation technique
245(3)
4.4 Challenges of phase separation technique
248(1)
5 Nano-Patterning Techniques using Native Polymers
248(3)
6 Concluding Remarks
251(6)
References
251(6)
Chapter 7 Native Polymer-based 3D Substitutes as Alternatives with Slow-Release Functions
257(50)
Dongwei Guo
Benson J. Edagwa
Xin-Ming Liu
1 Introduction
257(2)
2 Proteins
259(19)
2.1 Collagen
260(3)
2.2 Albumin
263(3)
2.3 Gelatin
266(3)
2.4 Zein
269(3)
2.5 Recombinant proteins and peptides
272(2)
2.6 Silk fibroin
274(2)
2.7 Fibrin
276(2)
3 Polysaccharides
278(16)
3.1 Chitosan
279(3)
3.2 Starch
282(3)
3.3 Alginate
285(3)
3.4 Hyaluronan
288(3)
3.5 Chondroitin sulphate
291(3)
4 Conclusion
294(13)
References
295(12)
Conclusions and Future Outlook 307(4)
Index 311