Atjaunināt sīkdatņu piekrišanu

E-grāmata: Natural General Intelligence: How understanding the brain can help us build AI

4.57/5 (75 ratings by Goodreads)
(Department of Experimental Psychology, University of Oxford)
  • Formāts: 352 pages
  • Izdošanas datums: 14-Dec-2022
  • Izdevniecība: Oxford University Press
  • Valoda: eng
  • ISBN-13: 9780192657657
  • Formāts - PDF+DRM
  • Cena: 48,76 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: 352 pages
  • Izdošanas datums: 14-Dec-2022
  • Izdevniecība: Oxford University Press
  • Valoda: eng
  • ISBN-13: 9780192657657

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

Since the time of Turing, computer scientists have dreamed of building artificial general intelligence (AGI) - a system that can think, learn and act as humans do. Over recent years, the remarkable pace of progress in machine learning research has reawakened discussions about AGI. But what would a generally intelligent agent be able to do? What algorithms, architectures, or cognitive functions would it need? To answer these questions, we turn to the study of natural intelligence. Humans (and many other animals) have evolved precisely the sorts of generality of function that AI researchers see as the defining hallmark of intelligence. The fields of cognitive science and neuroscience have provided us with a language for describing the ingredients of natural intelligence in terms of computational mechanisms and cognitive functions and studied their implementation in neural circuits.

Natural General Intelligence describes the algorithms and architectures that are driving progress in AI research in this language, by comparing current AI systems and biological brains side by side. In doing so, it addresses deep conceptual issues concerning how perceptual, memory and control systems work, and discusses the language in which we think and the structure of our knowledge. It also grapples with longstanding controversies about the nature of intelligence, and whether AI researchers should look to biology for inspiration. Ultimately, Summerfield aims to provide a bridge between the theories of those who study biological brains and the practice of those who are seeking to build artificial brains.

Recenzijas

This book will be of interest to students and researchers in cognitive psychology, neuroscience, computer science, and cognitive science. * Choice *

Abbreviations xi
1 Turing's question
1(32)
1.1 The ghost in the machine
1(4)
1.2 Al as neural theory
5(6)
1.3 Mercurial optimism
11(6)
1.4 Deep everything
17(3)
1.5 Shaking your foundations
20(6)
1.6 Gaming the system
26(7)
2 The nature of intelligence
33(28)
2.1 The polymathic principle
33(5)
2.2 Lab smarts and street smarts
38(7)
2.3 The Swiss cheese critique
45(6)
2.4 Look, no hands!
51(10)
3 The language of thought
61(46)
3.1 Thinking and knowing
61(5)
3.2 Intelligences A and B
66(5)
3.3 The units of thought
71(6)
3.4 The symbolic mind
77(8)
3.5 Mental models
85(4)
3.6 Reachingthebanana
89(7)
3.7 Your brain as statistician
96(5)
3.8 Playing Lego with concepts
101(6)
4 The structure of knowledge
107(42)
4.1 Total recall
107(7)
4.2 Perceptrons in space
114(6)
4.3 Maps in the mind
120(9)
4.4 Deep dreams
129(8)
4.5 When there is no there, there
137(12)
5 The problem of abstraction
149(32)
5.1 Molecular metaphors
149(6)
5.2 Playing Twenty Questions with space
155(8)
5.3 Abstractions as affordances
163(8)
5.4 Luke Skywalker neurons
171(10)
6 The value of action
181(36)
6.1 Climb every mountain
181(7)
6.2 The atoms of memory
188(7)
6.3 The basements of the brain
195(6)
6.4 The key to exploration
201(7)
6.5 Is reward enough?
208(9)
7 The control of memory
217(52)
7.1 The eligibility of experience
217(4)
7.2 The butcher on the bus
221(7)
7.3 The problem of a changingworld
228(9)
7.4 Finding structure in time
237(10)
7.5 Mental gymnastics
247(8)
7.6 Banishing the homunculus
255(7)
7.7 Learning simple programs
262(7)
8 A picture of the mind
269(34)
8.1 Where is my mind?
269(3)
8.2 Inductive biases
272(7)
8.3 The best of all possible brains?
279(6)
8.4 Is the mind flat?
285(6)
8.5 Concepts and programs
291(5)
8.6 Artificial intelligibility
296(7)
References 303(18)
Index 321
Christopher Summerfield is Professor of Cognitive Neuroscience at the University of Oxford and a Research Scientist at Deepmind UK. His work focusses on the neural and computational mechanisms by which humans make decisions.