Atjaunināt sīkdatņu piekrišanu

E-grāmata: Natural Language Processing and Chinese Computing: 13th National CCF Conference, NLPCC 2024, Hangzhou, China, November 1-3, 2024, Proceedings, Part III

Edited by , Edited by , Edited by
Citas grāmatas par šo tēmu:
  • Formāts - PDF+DRM
  • Cena: 77,31 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
Citas grāmatas par šo tēmu:

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

The five-volume set LNCS 15359 - 15363 constitutes the refereed proceedings of the 13th National CCF Conference on Natural Language Processing and Chinese Computing, NLPCC 2024, held in Hangzhou, China, during November 2024.

The 161 full papers and 33 evaluation workshop papers included in these proceedings were carefully reviewed and selected from 451 submissions. They deal with the following areas: Fundamentals of NLP; Information Extraction and Knowledge Graph; Information Retrieval, Dialogue Systems, and Question Answering; Large Language Models and Agents; Machine Learning for NLP; Machine Translation and Multilinguality; Multi-modality and Explainability; NLP Applications and Text Mining; Sentiment Analysis, Argumentation Mining, and Social Media; Summarization and Generation.
Improving Causal Inference of Large Language Models with SCM Tools.- A
Privacy-Preserving Framework for Medical Chatbot based on LLM with Retrieval
Augmented Generation.- Regularized Continual Learning for Large-Scale
Language Models via Probing.- LasQ: Largest Singular Components fine-tuning
for LLMs with Quantization.- MultiAICL: Multi-Task Tuning for Augmented
In-Context Learning in Text Style Transfer.- What is the best model?
Application-driven Evaluation for Large Language Models.-Sparse Mixture of
Experts Language Models Excel in Knowledge Distillation.- Evaluation and
Analysis of the Chinese Semantic Dependency Understanding Ability of Large
Language Models.- Reparameterization-based Parameter-Efficient Fine-Tuning
Methods for Large Language Models: A Systematic Survey.- SACL: Sequential
Augmentation with Curriculum Learning in Dataset Level.- Classifiers Guided
Controllable Text Generation for Discrete Diffusion Language Models.-
AugMixSpeech: A Data Augmentation Method and Consistency Regularization for
Mandarin Automatic Speech Recognition.- FIRP: Faster LLM inference via future
intermediate representation prediction.- Margin Discrepancy-based Adversarial
Training for Multi-Domain Text Classification.- Effective Knowledge Graph
Embedding with Quaternion Convolutional Networks.- Improving End-to-End
Speech Translation with Progressive Dual Encoding.- Assessing Translation
Quality of Hypotactic Structure for Chinese-to-English Machine Translation.-
Understanding and Improving Low-Resource Neural Machine Translation with
Shallow Features.- Improving Non-autoregressive Machine Translation with
Error Exposure and Consistency Regularization.- Neural Chat Translation as
Online Document-to-Document Translation.- Autogenerated MQM Data for Quality
Estimation based on Sequence Labeling.- Pruning Residual Networks in
Multilingual Neural Machine Translation to Improve Zero-shot Translation.-
Leveraging Parameter-Efficient Fine-Tuning for Multilingual Abstractive
Summarization.- Improving Automatic Post-editing with Error Prompts Extracted
from Quality Estimation.- Progressive and Consistent Subword Regularization
for Neural Machine Translation.- Language-Emphasized Cross-Lingual In-Context
Learning for Multilingual LLM.- A Multilevel Interaction Network Framework
for Multimodal Entity Linking.- Evaluating the Fidelity of Image Captioning
via Weighted Boolean Question Answering.- Optimized Conversational Gesture
Generation with Enhanced Motion Feature Extraction and Cascaded Generator.-
Exploring the Potential of Prompting Methods in Low-resource Speech
Recognition with Whisper.- RAVL: A Retrieval-Augmented Visual Language Model
Framework for Knowledge-Based Visual Question Answering.- ASRLM: ASR-Robust
Language Model Pre-Training via Generative and Discriminative learning.-
DFS-QA: Dynamic Frame Selection for Better Video Question Answering.- Deep
Foreground-Background Weighted Cross-Modal Hashing.- Graph Interpretation of
Image-Text matching: Link Prediction on Concept-Enhanced Cross-Modal Graph.-
Multi-Granularity Semantic Guided Transformer for Radiology Report
Generation.- Steganographic Text Generation Based on Large Language Models in
Dialogue Scenarios.- A Novel ICD Coding Method Based on Associated and
Hierarchical Code Description Distillation.