Atjaunināt sīkdatņu piekrišanu

Natural Language Processing and Chinese Computing: 13th National CCF Conference, NLPCC 2024, Hangzhou, China, November 13, 2024, Proceedings, Part IV 2024 ed. [Mīkstie vāki]

Edited by , Edited by , Edited by
  • Formāts: Paperback / softback, 513 pages, height x width: 235x155 mm, 146 Illustrations, color; 13 Illustrations, black and white; XXXIV, 513 p. 159 illus., 146 illus. in color., 1 Paperback / softback
  • Sērija : Lecture Notes in Computer Science 15362
  • Izdošanas datums: 01-Nov-2024
  • Izdevniecība: Springer Nature
  • ISBN-10: 9819794390
  • ISBN-13: 9789819794393
Citas grāmatas par šo tēmu:
  • Mīkstie vāki
  • Cena: 75,47 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Standarta cena: 88,79 €
  • Ietaupiet 15%
  • Grāmatu piegādes laiks ir 3-4 nedēļas, ja grāmata ir uz vietas izdevniecības noliktavā. Ja izdevējam nepieciešams publicēt jaunu tirāžu, grāmatas piegāde var aizkavēties.
  • Daudzums:
  • Ielikt grozā
  • Piegādes laiks - 4-6 nedēļas
  • Pievienot vēlmju sarakstam
  • Formāts: Paperback / softback, 513 pages, height x width: 235x155 mm, 146 Illustrations, color; 13 Illustrations, black and white; XXXIV, 513 p. 159 illus., 146 illus. in color., 1 Paperback / softback
  • Sērija : Lecture Notes in Computer Science 15362
  • Izdošanas datums: 01-Nov-2024
  • Izdevniecība: Springer Nature
  • ISBN-10: 9819794390
  • ISBN-13: 9789819794393
Citas grāmatas par šo tēmu:
The five-volume set LNCS 15359 - 15363 constitutes the refereed proceedings of the 13th National CCF Conference on Natural Language Processing and Chinese Computing, NLPCC 2024, held in Hangzhou, China, during November 2024.

The 161 full papers and 33 evaluation workshop papers included in these proceedings were carefully reviewed and selected from 451 submissions. They deal with the following areas: Fundamentals of NLP; Information Extraction and Knowledge Graph; Information Retrieval, Dialogue Systems, and Question Answering; Large Language Models and Agents; Machine Learning for NLP; Machine Translation and Multilinguality; Multi-modality and Explainability; NLP Applications and Text Mining; Sentiment Analysis, Argumentation Mining, and Social Media; Summarization and Generation.