Atjaunināt sīkdatņu piekrišanu

Natural Language Processing for Online Applications: Text retrieval, extraction and categorization. Second revised edition 2nd Revised edition [Mīkstie vāki]

3.81/5 (26 ratings by Goodreads)
(Thomson Corporation), (Thomson Corporation)
  • Formāts: Paperback / softback, 231 pages, height x width: 240x160 mm, weight: 450 g
  • Sērija : Natural Language Processing 5
  • Izdošanas datums: 05-Jun-2007
  • Izdevniecība: John Benjamins Publishing Co
  • ISBN-10: 9027249938
  • ISBN-13: 9789027249937
Citas grāmatas par šo tēmu:
  • Mīkstie vāki
  • Cena: 46,82 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Grāmatu piegādes laiks ir 3-4 nedēļas, ja grāmata ir uz vietas izdevniecības noliktavā. Ja izdevējam nepieciešams publicēt jaunu tirāžu, grāmatas piegāde var aizkavēties.
  • Daudzums:
  • Ielikt grozā
  • Piegādes laiks - 4-6 nedēļas
  • Pievienot vēlmju sarakstam
  • Formāts: Paperback / softback, 231 pages, height x width: 240x160 mm, weight: 450 g
  • Sērija : Natural Language Processing 5
  • Izdošanas datums: 05-Jun-2007
  • Izdevniecība: John Benjamins Publishing Co
  • ISBN-10: 9027249938
  • ISBN-13: 9789027249937
Citas grāmatas par šo tēmu:
Jackson and Moulinier, with a research and development company, explain how to harness computers to process natural language for commercial ends. They emphasize particular tasks that people want software to perform, the techniques that are currently available, and new technologies on the horizon. The first edition (no date noted) was used almost exclusively in academic realms, so the second edition has dropped the sections intended for general readers. Annotation ©2007 Book News, Inc., Portland, OR (booknews.com)

This text covers the technologies of document retrieval, information extraction, and text categorization in a way which highlights commonalities in terms of both general principles and practical concerns. It assumes some mathematical background on the part of the reader, but the chapters typically begin with a non-mathematical account of the key issues. Current research topics are covered only to the extent that they are informing current applications; detailed coverage of longer term research and more theoretical treatments should be sought elsewhere. There are many pointers at the ends of the chapters that the reader can follow to explore the literature. However, the book does maintain a strong emphasis on evaluation in every chapter both in terms of methodology and the results of controlled experimentation.
1. Preface to the 2nd edition;
2.
Chapter
1. Natural language
processing;
3. 1.1 What is NLP?;
4. 1.2 NLP and linguistics;
5. 1.3
Linguistic tools;
6. 1.4 Plan of the book;
7.
Chapter
2. Document retrieval;
8. 2.1 Information retrieval;
9. 2.2 Indexing technology;
10. 2.3 Query
processing;
11. 2.4 Evaluating search engines;
12. 2.5 Attempts to enhance
search performance;
13. 2.6 The future ofWeb searching;
14.
Chapter
3.
Information extraction;
15. 3.1 The message understanding conferences;
16.
3.2 Regular expressions;
17. 3.3 Finite automata in FASTUS;
18. 3.4
Context-free grammars;
19. 3.5 Limitations of current technology and future
research;
20. 3.6 Summary of information extraction;
21.
Chapter
4. Text
categorization;
22. 4.1 Overview of categorization tasks;
23. 4.2 Handcrafted
rule based methods;
24. 4.3 Inductive learning for text classification;
25.
4.4 Nearest neighbor algorithms;
26. 4.5 Combining classifiers;
27. 4.6
Evaluation of text categorization systems;
28.
Chapter
5. Text mining;
29.
5.1 What is text mining?;
30. 5.2 Resolving reference and coreference;
31.
5.3 Automatic summarization;
32. 5.4 Testing of automatic summarization
programs;
33. 5.5 Prospects for text mining and NLP;
34. References;
35. Index