Atjaunināt sīkdatņu piekrišanu

Nature-Inspired Algorithms for Big Data Frameworks [Hardback]

Edited by , Edited by , Edited by
  • Formāts: Hardback, 412 pages, height x width: 279x216 mm, weight: 1369 g
  • Izdošanas datums: 28-Sep-2018
  • Izdevniecība: IGI Global
  • ISBN-10: 1522558527
  • ISBN-13: 9781522558521
Citas grāmatas par šo tēmu:
  • Hardback
  • Cena: 309,61 €
  • Grāmatu piegādes laiks ir 3-4 nedēļas, ja grāmata ir uz vietas izdevniecības noliktavā. Ja izdevējam nepieciešams publicēt jaunu tirāžu, grāmatas piegāde var aizkavēties.
  • Daudzums:
  • Ielikt grozā
  • Piegādes laiks - 4-6 nedēļas
  • Pievienot vēlmju sarakstam
  • Formāts: Hardback, 412 pages, height x width: 279x216 mm, weight: 1369 g
  • Izdošanas datums: 28-Sep-2018
  • Izdevniecība: IGI Global
  • ISBN-10: 1522558527
  • ISBN-13: 9781522558521
Citas grāmatas par šo tēmu:
As technology continues to become more sophisticated, mimicking natural processes and phenomena becomes more of a reality. Continued research in the field of natural computing enables an understanding of the world around us, in addition to opportunities for manmade computing to mirror the natural processes and systems that have existed for centuries.

Nature-Inspired Algorithms for Big Data Frameworks is a collection of innovative research on the methods and applications of extracting meaningful information from data using algorithms that are capable of handling the constraints of processing time, memory usage, and the dynamic and unstructured nature of data. Highlighting a range of topics including genetic algorithms, data classification, and wireless sensor networks, this book is ideally designed for computer engineers, software developers, IT professionals, academicians, researchers, and upper-level students seeking current research on the application of nature and biologically inspired algorithms for handling challenges posed by big data in diverse environments.
Preface xvii
Acknowledgment xxii
Section 1 Nature-Inspired Algorithms for High Dimensions
Chapter 1 Deep Learning for Big Data Analytics
1(21)
Priti Srinivas Sajja
Rajendra Akerkar
Chapter 2 Genetic Algorithm Based Pre-Processing Strategy for High Dimensional Micro-Array Gene Classification: Application of Nature Inspired Intelligence
22(25)
Deepak Singh
Dilip Singh Sisodia
Pradeep Singh
Chapter 3 Subspace Clustering of High Dimensional Data Using Differential Evolution
47(28)
Parul Agarwal
Shikha Mehta
Chapter 4 Nature Inspired Feature Selector for Effective Data Classification in Big Data Frameworks
75(19)
Appavu Alias Balamurugan Subramanian
Section 2 Nature-Inspired Approaches for Complex Optimizations
Chapter 5 Motion Planning of Non-Holonomic Wheeled Robots Using Modified Bat Algorithm
94(30)
Abhishek Ghosh Roy
Pratyusha Rakshit
Chapter 6 Application of Nature-Inspired Algorithms for Sensing Error Optimisation in Dynamic Environment
124(46)
Sumitra Mukhopadhyay
Soumyadip Das
Chapter 7 Wolf-Swarm Colony for Signature Gene Selection Using Weighted Objective Method
170(26)
Prativa Agarwalla
Sumitra Mukhopadhyay
Chapter 8 Scheduling Data Intensive Scientific Workflows in Cloud Environment Using Nature Inspired Algorithms
196(22)
Shikha Mehta
Parmeet Kaur
Chapter 9 PSO-Based Antenna Pattern Synthesis: A Paradigm for Secured Data Communications
218(28)
Rathindra Nath Biswas
Anurup Saha
Swarup Kumar Mitra
Mrinal Kanti Naskar
Chapter 10 Nature-Inspired Algorithms in Wireless Sensor Networks
246(30)
Ajay Kaushik
S. Indu
Daya Gupta
Chapter 11 Aircraft Aerodynamic Parameter Estimation Using Intelligent Estimation Algorithms
276(14)
Abhishek Ghosh Roy
Naba Kumar Peyada
Section 3 Nature-Inspired Solutions for Web Analytics
Chapter 12 Analysis of Multiplex Social Networks Using Nature-Inspired Algorithms
290(29)
Ruchi Mittal
M. P. S. Bhatia
Chapter 13 Pedagogical Software Agents for Personalized E-Learning Using Soft Computing Techniques
319(20)
Mukta Goyal
Rajalakshmi Krishnamurthi
Chapter 14 Graph and Neural Network-Based Intelligent Conversation System
339(19)
Anuja Arora
Aman Srivastava
Shivam Bansal
Chapter 15 Big Data Analytics Using Apache Hive to Analyze Health Data
358(15)
Pavani Konagala
Compilation of References 373(33)
About the Contributors 406(5)
Index 411