Atjaunināt sīkdatņu piekrišanu

E-grāmata: NEO 2016: Results of the Numerical and Evolutionary Optimization Workshop NEO 2016 and the NEO Cities 2016 Workshop held on September 20-24, 2016 in Tlalnepantla, Mexico

Edited by , Edited by , Edited by , Edited by , Edited by
Citas grāmatas par šo tēmu:
  • Formāts - PDF+DRM
  • Cena: 106,47 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
Citas grāmatas par šo tēmu:

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

This volume comprises a selection of works presented at the Numerical and Evolutionary Optimization (NEO 2016) workshop held in September 2016 in Tlalnepantla, Mexico. The development of powerful search and optimization techniques is of great importance in today’s world and requires researchers and practitioners to tackle a growing number of challenging real-world problems. In particular, there are two well-established and widely known ?elds that are commonly applied in this area: (i) traditional numerical optimization techniques and (ii) comparatively recent bio-inspired heuristics. Both paradigms have their unique strengths and weaknesses, allowing them to solve some challenging problems while still failing in others.

The goal of the NEO workshop series is to bring together experts from these and related ?elds to discuss, compare and merge their complementary perspectives in order to develop fast and reliable hybrid methods that maximize the strengths and minimize the weaknesses of the underlying paradigms. In doing so, NEO promotes the development of new techniques that are applicable to a broader class of problems. Moreover, NEO fosters the understanding and adequate treatment of real-world problems particularly in emerging ?elds that affect all of us, such as healthcare, smart cities, big data, among many others. The extended papers presented in the book contribute to achieving this goal.

Part I Smart Cities
Defensive Driving Strategy and Control for Autonomous Ground Vehicle in Mixed Traffic
3(42)
Xiang Li
Jian-Qiao Sun
Augmenting the LSA Technique to Evaluate Ubicomp Environments
45(20)
Victor R. Lopez-Lopez
Lizbeth Escobedo
Leonardo Trujillo
Victor H. Diaz-Ramirez
Mixed Integer Programming Formulation for the Energy-Efficient Train Timetables Problem
65(22)
Rodrigo Alexander Castro Campos
Sergio Luis Perez Perez
Gualberto Vazquez Casas
Francisco Javier Zaragoza Martinez
Distributing Computing in the Internet of Things: Cloud, Fog and Edge Computing Overview
87(32)
P.J. Escamilla-Ambrosio
A. Rodriguez-Mota
E. Aguirre-Anaya
R. Acosta-Bermejo
M. Salinas-Rosales
Part II Search, Optimization and Hybrid Algorithms
Integer Programming Models and Heuristics for Non-crossing Euclidean 3-Matchings
119(22)
Rodrigo Alexander Castro Campos
Marco Antonio Heredia Velasco
Gualberto Vazquez Casas
Francisco Javier Zaragoza Martinez
A Multi-objective Robust Ellipse Fitting Algorithm
141(18)
Heriberto Cruz Hernandez
Luis Gerardo de la Fraga
Gradient-Based Multiobjective Optimization with Uncertainties
159(24)
Sebastian Peitz
Michael Dellnitz
A New Local Search Heuristic for the Multidimensional Assignment Problem
183(22)
Sergio Luis Perez Perez
Carlos E. Valencia
Francisco Javier Zaragoza Martinez
Part III Electronics and Embedded Systems
A Multi-objective and Multidisciplinary Optimisation Algorithm for Microelectromechanical Systems
205(34)
Michael Famsworth
Ashutosh Tiwari
Meiling Zhu
Elhadj Benkhelifa
Coefficients Estimation of MPM Through LSE, ORLS and SLS for RF-PA Modeling and DPD
239(24)
E. Allende-Chavez
S.A. Juarez-Cazares
J.R. Cardenas-Valdez
Y. Sandoval-Ibarra
J.A. Galaviz-Aguilar
Leonardo Trujillo
J.C. Nunez-Perez
Optimal Sizing of Amplifiers by Evolutionary Algorithms with Integer Encoding and gm/ID Design Method
263(18)
Adriana C. Sanabria-Borbon
Esteban Tlelo-Cuautle
Luis Gerardo de la Fraga
Index 281