Atjaunināt sīkdatņu piekrišanu

E-grāmata: Network Interdiction and Stochastic Integer Programming

  • Formāts - PDF+DRM
  • Cena: 53,52 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

Papers from a March 2002 workshop held at the University of California-Davis address problems associated with protecting and attacking computer, transportation, and social networks. Optimization models that deal with the stochastic nature of these problems are an important part of the book. Some specific topics include interdicting smuggled nuclear material, a decomposition-based approximation for network inhibition, interdicting stochastic networks, stochastic batch sizing, and disjunctive decomposition with set convexification. Woodruff is affiliated with the University of California-Davis. Annotation (c) Book News, Inc., Portland, OR (booknews.com)

The Network Interdiction Problem has a wide variety of applications in areas such as transportation, but more recently and very prominently, it has applications in the communications area. Network Interdiction and Stochastic Integer Programming focuses on problems associated with protecting and attacking computer, transportation, and social networks. These research areas gain importance as the world becomes more dependent on interconnected systems. Optimization models that address the stochastic nature of the problems are an important part of the book and it contains discussion of recent efforts to provide methods for addressing stochastic mixed integer programs.

The book is organized with interdiction papers first and the stochastic programming papers in the second part. See the foreword by Roger Wets for further details on the topical coverage. Each chapter represents state-of-the-art research and all chapters have been carefully peer-reviewed.

Preface vii
Contributing Authors viii
Foreword ix
Roger J-B. Wets
Interdicting Smuggled Nuclear Material
1(20)
Feng Pan
William S. Charlton
David P. Morton
A Stochastic Network Interdiction Model
5(5)
Complexity
10(2)
Application to Smuggling Out of a Single Country
12(4)
Summary
16(1)
Acknowledgements
17(4)
Enumerating Near-Min s-t Cuts
21(30)
Ahmet Balciglu
R. Kevin Wood
Preliminaries
25(1)
Theoretical Results
26(11)
Computational Results
37(8)
Conclusions and Recommendations
45(6)
A Decomposition-Based Approximation for Network Inhibition
51(18)
Carl Burch
Robert Carr
Sven Krumke
Madhav Marathe
Cynthia Phillips
Eric Sundberg
Introduction
52(4)
A Mixed-Integer Program for Network Inhibition
56(1)
The Pseudo-approximation Algorithm
57(2)
Decomposition
59(5)
Geometry
64(2)
Extensions
66(3)
Interdicting Stochastic Networks
69(16)
Raymond Hemmecke
Rudiger Schultz
David L. Woodruff
Introduction
70(3)
Example
73(3)
A Special Case: Disconnection as the Threshold
76(2)
Benchmarks
78(3)
Conclusions
81(4)
Stochastic Batch-Sizing
85(20)
Guglielmo Lulli
Suvrajeet Sen
Stochastic Batch-Sizing Formulations
88(4)
Algorithmic approaches for Stochastic Batch-Sizing
92(3)
Computational Results
95(3)
Solutions from Alternative Models
98(3)
Conclusions
101(4)
Disjunctive Decomposition with Set Convexification
105(1)
Suvrajeet Sen
Julia L. Higle
Lewis Ntaimo
Background
106(9)
An Illustration of the D2 Algorithm
115(8)
Conclusions
123