Atjaunināt sīkdatņu piekrišanu

Neural Information Processing: 23rd International Conference, ICONIP 2016, Kyoto, Japan, October 1621, 2016, Proceedings, Part I 1st ed. 2016 [Mīkstie vāki]

Edited by , Edited by , Edited by , Edited by , Edited by , Edited by
  • Formāts: Paperback / softback, 639 pages, height x width: 235x155 mm, weight: 9883 g, 250 Illustrations, black and white; XIX, 639 p. 250 illus., 1 Paperback / softback
  • Sērija : Lecture Notes in Computer Science 9947
  • Izdošanas datums: 29-Sep-2016
  • Izdevniecība: Springer International Publishing AG
  • ISBN-10: 3319466860
  • ISBN-13: 9783319466866
Citas grāmatas par šo tēmu:
  • Mīkstie vāki
  • Cena: 46,91 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Standarta cena: 55,19 €
  • Ietaupiet 15%
  • Grāmatu piegādes laiks ir 3-4 nedēļas, ja grāmata ir uz vietas izdevniecības noliktavā. Ja izdevējam nepieciešams publicēt jaunu tirāžu, grāmatas piegāde var aizkavēties.
  • Daudzums:
  • Ielikt grozā
  • Piegādes laiks - 4-6 nedēļas
  • Pievienot vēlmju sarakstam
  • Formāts: Paperback / softback, 639 pages, height x width: 235x155 mm, weight: 9883 g, 250 Illustrations, black and white; XIX, 639 p. 250 illus., 1 Paperback / softback
  • Sērija : Lecture Notes in Computer Science 9947
  • Izdošanas datums: 29-Sep-2016
  • Izdevniecība: Springer International Publishing AG
  • ISBN-10: 3319466860
  • ISBN-13: 9783319466866
Citas grāmatas par šo tēmu:

The four volume set LNCS 9947, LNCS 9948, LNCS 9949, and LNCS 9950 constitutes the proceedings of the 23rd International Conference on Neural Information Processing, ICONIP 2016, held in Kyoto, Japan, in October 2016. The 296 full papers presented were carefully reviewed and selected from 431 submissions. The 4 volumes are organized in topical sections on deep and reinforcement learning; big data analysis; neural data analysis; robotics and control; bio-inspired/energy efficient information processing; whole brain architecture; neurodynamics; bioinformatics; biomedical engineering; data mining and cybersecurity workshop; machine learning; neuromorphic hardware; sensory perception; pattern recognition; social networks; brain-machine interface; computer vision; time series analysis; data-driven approach for extracting latent features; topological and graph based clustering methods; computational intelligence; data mining; deep neural networks; computational and cognitive neurosciences; theory and algorithms.

Deep and reinforcement learning.- Big data analysis.- Neural data analysis.-Robotics and control.- Bio-inspired/energy efficient information processing.-Whole brain architecture.- Neurodynamics.- Bioinformatics.- Biomedical engineering.- Data mining and cybersecurity workshop.- Machine learning.- Neuromorphic hardware.- Sensory perception.- Pattern recognition.- Social networks.- Brain-machine interface.- Computer vision.- Time series analysis.-Data-driven approach for extracting latent features.- Topological and graph based clustering methods.- Computational intelligence.- Data mining.- Deep neural networks.- Computational and cognitive neurosciences.- Theory and algorithms.