Atjaunināt sīkdatņu piekrišanu

Neural Information Processing: 25th International Conference, ICONIP 2018, Siem Reap, Cambodia, December 1316, 2018, Proceedings, Part III 2018 ed. [Mīkstie vāki]

Edited by , Edited by , Edited by
  • Formāts: Paperback / softback, 687 pages, height x width: 235x155 mm, weight: 1074 g, 141 Illustrations, color; 263 Illustrations, black and white; XXI, 687 p. 404 illus., 141 illus. in color., 1 Paperback / softback
  • Sērija : Theoretical Computer Science and General Issues 11303
  • Izdošanas datums: 18-Nov-2018
  • Izdevniecība: Springer Nature Switzerland AG
  • ISBN-10: 3030041816
  • ISBN-13: 9783030041816
  • Mīkstie vāki
  • Cena: 82,61 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Standarta cena: 97,19 €
  • Ietaupiet 15%
  • Grāmatu piegādes laiks ir 3-4 nedēļas, ja grāmata ir uz vietas izdevniecības noliktavā. Ja izdevējam nepieciešams publicēt jaunu tirāžu, grāmatas piegāde var aizkavēties.
  • Daudzums:
  • Ielikt grozā
  • Piegādes laiks - 4-6 nedēļas
  • Pievienot vēlmju sarakstam
  • Formāts: Paperback / softback, 687 pages, height x width: 235x155 mm, weight: 1074 g, 141 Illustrations, color; 263 Illustrations, black and white; XXI, 687 p. 404 illus., 141 illus. in color., 1 Paperback / softback
  • Sērija : Theoretical Computer Science and General Issues 11303
  • Izdošanas datums: 18-Nov-2018
  • Izdevniecība: Springer Nature Switzerland AG
  • ISBN-10: 3030041816
  • ISBN-13: 9783030041816

The seven-volume set of LNCS 11301-11307, constitutes the proceedings of the 25th International Conference on Neural Information Processing, ICONIP 2018, held in Siem Reap, Cambodia, in December 2018.

The 401 full papers presented were carefully reviewed and selected from 575 submissions. The papers address the emerging topics of theoretical research, empirical studies, and applications of neural information processing techniques across different domains. The third volume, LNCS 11303, is organized in topical sections on embedded learning, transfer learning, reinforcement learning, and other learning approaches.