Atjaunināt sīkdatņu piekrišanu

E-grāmata: Neural Information Processing: 28th International Conference, ICONIP 2021, Sanur, Bali, Indonesia, December 8-12, 2021, Proceedings, Part I

Edited by , Edited by , Edited by , Edited by , Edited by
  • Formāts: EPUB+DRM
  • Sērija : Lecture Notes in Computer Science 13108
  • Izdošanas datums: 05-Dec-2021
  • Izdevniecība: Springer Nature Switzerland AG
  • Valoda: eng
  • ISBN-13: 9783030921859
  • Formāts - EPUB+DRM
  • Cena: 106,47 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: EPUB+DRM
  • Sērija : Lecture Notes in Computer Science 13108
  • Izdošanas datums: 05-Dec-2021
  • Izdevniecība: Springer Nature Switzerland AG
  • Valoda: eng
  • ISBN-13: 9783030921859

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

The four-volume proceedings LNCS 13108, 13109, 13110, and 13111 constitutes the proceedings of the 28th International Conference on Neural Information Processing, ICONIP 2021, which was held during December 8-12, 2021. The conference was planned to take place in Bali, Indonesia but changed to an online format due to the COVID-19 pandemic.





The total of 226 full papers presented in these proceedings was carefully reviewed and selected from 1093 submissions. The papers were organized in topical sections as follows:





Part I: Theory and algorithms;





Part II: Theory and algorithms; human centred computing; AI and cybersecurity;





Part III: Cognitive neurosciences; reliable, robust, and secure machine learning algorithms; theory and applications of natural computing paradigms; advances in deep and shallow machine learning algorithms for biomedical data and imaging; applications;  





Part IV: Applications.
Theory and Algorithms.- Metric Learning Based Vision Transformer for Product Matching.- Stochastic Recurrent Neural Network for Multistep Time Series Forecasting.- Speaker Verification with Disentangled Self-Attention.- Multi Modal Normalization.- A Focally Discriminative Loss for Unsupervised Domain Adaptation.- Automatic Drum Transcription with Label Augmentation using Convolutional Neural Networks.- Adaptive Curriculum Learning for Semi-Supervised Segmentation of 3D CT-Scans.- Genetic Algorithm and Distinctiveness Pruning in the Shallow Networks for VehicleX.- Stack Multiple Shallow Autoencoders into A Strong One: A New Reconstruction-based Method to Detect Anomaly.- Learning Discriminative Representation with Attention and Diversity for Large-scale Face Recognition.- Multi-task Perceptual Occlusion Face Detection with Semantic Attention Network.- RAIDU-Net: Image Inpainting via Residual Attention Fusion and Gated Information Distillation.- Sentence Rewriting with Few-Shot Learningfor Document-Level Event Coreference Resolution.- A Novel Metric Learning Framework for Semi-supervised Domain Adaptation.- Generating Adversarial Examples by Distributed Upsampling.- CPSAM: Channel and Position Squeeze Attention Module.- A Multi-Channel Graph Attention Network for Chinese NER.- GSNESR: A Global Social Network Embedding Approach for Social Recommendation.- Classification Models for Medical Data with Interpretative Rules.- Contrastive Goal Grouping for Policy Generalization in Goal-Conditioned Reinforcement Learning.- Global Fusion Capsule Network with Pairwise-Relation Attention Graph Routing.- MA-GAN: A Method Based on Generative Adversarial Network for Calligraphy Morphing.- One-Stage Open Set Object Detection with Prototype Learning.- Aesthetic-aware Recommender System for Online Fashion Products.- DAFD: Domain Adaptation Framework for Fake News Detection.- Document Image Classification Method based on Graph Convolutional Network.- Continual Learning of 3D Point Cloud Generators.- Attention-Based 3D ResNet for Detection of Alzheimer's Disease Process.- Generation of a Large-Scale Line Image Dataset with Ground Truth Texts from Page-Level Autograph Documents.- DAP-BERT: Differentiable Architecture Pruning of BERT.- Trash Detection On Water Channels.- Tri-Transformer Hawkes Process: Three Heads are better than one.- PhenoDeep: A deep Learning-based approach for detecting reproductive organs from digitized herbarium specimen images.- Document-level Event Factuality Identification using Negation and Speculation Scope.- Dynamic Network Embedding by Time-Relaxed Temporal Random Walk.- Dual-band Maritime Ship Classification based on Multi-layer Convolutional Features and Bayesian Decision.- Context-Based Anomaly Detection via Spatial Attributed Graphs in Human Monitoring.- Domain-Adaptation Person Re-Identification via Style Translation and Clustering.- Multimodal Named Entity Recognition Via Co-attention-based Method with Dynamic Visual Concept Expansion.- Ego Networks.- Cross-modal based Person Re-Identification via Channel Exchange and adversarial Learning.- SPBERT: An Efficient Pre-training BERT on SPARQL Queries for Question Answering over Knowledge Graphs.- Deep Neuroevolution: Training Neural Networks using a Matrix-free Evolution Strategy.- Weighted P-Rank: A Weighted Article Ranking Algorithm Based on a Heterogeneous Scholarly Network.- Clustering Friendly Dictionary Learning.- Understanding Test-Time Augmentation.- SphereCF: Sphere Embedding for Collaborative Filtering.- Concordant Contrastive Learning for Semi-supervised Node Classification on Graph.- Improving Shallow Neural Networks via Local and Global Normalization.- Underwater Acoustic Target Recognition with Fusion Feature.- Evaluating Data Characterization Measures for Clustering Problems in Meta-learning.- ShallowNet: An Efficient Lightweight Text Detection Network Based on Instance Count-aware Supervision Information.- Image Periodization for Convolutional NeuralNetworks.- BCN-GCN: A Novel Brain Connectivity Network Classification Method via Graph Convolution Neural Network for Alzheimer's Disease.- Triplet Mapping for Continuously Knowledge Distillation.- A Prediction-Augmented AutoEncoder for Multivariate Time Series Anomaly Detection.