Atjaunināt sīkdatņu piekrišanu

E-grāmata: Neural Information Processing: 28th International Conference, ICONIP 2021, Sanur, Bali, Indonesia, December 8-12, 2021, Proceedings, Part IV

Edited by , Edited by , Edited by , Edited by , Edited by
  • Formāts - EPUB+DRM
  • Cena: 106,47 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

The four-volume proceedings LNCS 13108, 13109, 13110, and 13111 constitutes the proceedings of the 28th International Conference on Neural Information Processing, ICONIP 2021, which was held during December 8-12, 2021. The conference was planned to take place in Bali, Indonesia but changed to an online format due to the COVID-19 pandemic.





The total of 226 full papers presented in these proceedings was carefully reviewed and selected from 1093 submissions. The papers were organized in topical sections as follows:





Part I: Theory and algorithms;





Part II: Theory and algorithms; human centred computing; AI and cybersecurity;





Part III: Cognitive neurosciences; reliable, robust, and secure machine learning algorithms; theory and applications of natural computing paradigms; advances in deep and shallow machine learning algorithms for biomedical data and imaging; applications;  





Part IV: Applications.
Applications.- Deep Supervised Hashing By Classification For Image
Retrieval.- Towards Human-level Performance in Solving Double Dummy Bridge
Problem.- Coarse-to-Fine Visual Place Recognition.- BFConv: Improving
Convolutional Neural Networks with Butterfly Convolution.- Integrating Rich
Utterance Features for Emotion Recognition in Multi-party Conversations.-
Vehicle Image Generation Going Well with the Surroundings.- Scale Invariant
Domain Generalization Image Recapture Detection.- Tile2Vec with Predicting
Noise for Land Cover Classification.- A Joint Representation Learning
Approach for Social Media Tag Recommendation.- Identity-based Data
Augmentation via Progressive Sampling for One-Shot Person Re-identification.-
Feature Fusion Learning Based on LSTM and CNN Networks for Trend Analysis of
Limit Order Books.- WikiFlash: Generating Flashcards from Wikipedia
Articles.- Video Face Recognition with Audio-Visual Aggregation Network.-
WaveFuse: A Unified Unsupervised Framework forImage Fusion with Discrete
Wavelet Transform.- Manipulation-invariant Fingerprints for Cross-dataset
Deepfake Detection.- Low-resource Neural Machine Translation Using Fast
Meta-Learning method.- Efficient, Low-Cost, Real-Time Video Super-Resolution
Network.- On the Unreasonable Effectiveness of Centroids in Image Retrieval.-
Few-shot Classification with Multi-task Self-supervised Learning.-
Self-Supervised Compressed Video Action Recognition via Temporal-Consistent
Sampling.- Stack-VAE network for Zero-Shot Learning.- TRUFM: a
Transformer-guided Framework for Fine-grained Urban Flow Inference.- Saliency
Detection Framework Based on Deep Enhanced Attention Network.- SynthTriplet
GAN: Synthetic Query Expansion for Multimodal Retrieval.- SS-CCN: Scale
Self-guided Crowd Counting Network.- QS-Hyper: A Quality-Sensitive Hyper
Network for the No-Reference Image Quality Assessment.- An Efficient Manifold
Density Estimator for All Recommendation Systems.- Cleora: A Simple, Strong
and ScalableGraph Embedding Scheme.- STA3DCNN: Spatial-temporal Attention 3D
Convolutional Neural Network for Citywide Crowd Flow Prediction.- Learning
Pre-Grasp Pushing Manipulation of Wide and Flat Objects using Binary Masks.-
Multi-DIP: A General Framework For Unsupervised Multi-degraded Image
Restoration.- Multi-Attention Network for Arbitrary Style Transfer.- Image
Brightness Adjustment with Unpaired Training.- Self-Supervised Image-to-Text
and Text-to-Image Synthesis.- TextCut: A Multi-region Replacement Data
Augmentation Approach for Text Imbalance Classification.- A Multi-task Model
for Sentiment aided Cyberbullying Detection in Code-Mixed Indian Languages.-
A Transformer-based Model for Low-resource Event Detection.- Malicious Domain
Detection on Imbalanced Data with Deep Reinforcement Learning.- Designing and
Searching for Lightweight Monocular Depth Network.- Improving Question
Answering over Knowledge Graphs Using Graph Summarization.- Multi-Stage
Hybrid Attentive Networks for Knowledge-Driven Stock Movement Prediction.-
End-to-End Edge Detection via Improved Transformer Model.- Isnt it ironic,
dont you think.- Neural Local and Global Contexts Learning for Word Sense
Disambiguation.- Towards Better Dermoscopic Image Feature Representation
Learning for Melanoma Classification.- Paraphrase Identification with Neural
Elaboration Relation Learning.- Hybrid DE-MLP-based Modeling Technique for
Prediction of Alloying Element Proportions and Process Parameters.- A Mutual
Information-based Disentanglement Framework for Cross-Modal Retrieval.-
AGRP:A Fused Aspect-Graph Neural Network for Rating Prediction.- Classmates
Enhanced Diversity-self-attention Network for Dropout Prediction in MOOCs.- A
Hierarchical Graph-based Neural Network for Malware Classification.- A Visual
Feature Detection Algorithm Inspired by Spatio-temporal Properties of Visual
Neurons.- Knowledge Distillation Method for Surface Defect Detection.-
Adaptive Selection of Classifiers for Person Recognitionby Iris Pattern and
Periocular Image.- Multi-Perspective Interactive Model for Chinese Sentence
Semantic Matching.- An Effective Implicit Multi-Interest Interaction Network
for Recommendation.