Atjaunināt sīkdatņu piekrišanu

E-grāmata: Neural Information Processing: 29th International Conference, ICONIP 2022, Virtual Event, November 22-26, 2022, Proceedings, Part I

Edited by , Edited by , Edited by , Edited by , Edited by
  • Formāts: EPUB+DRM
  • Sērija : Lecture Notes in Computer Science 13623
  • Izdošanas datums: 12-Apr-2023
  • Izdevniecība: Springer International Publishing AG
  • Valoda: eng
  • ISBN-13: 9783031301056
  • Formāts - EPUB+DRM
  • Cena: 106,47 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: EPUB+DRM
  • Sērija : Lecture Notes in Computer Science 13623
  • Izdošanas datums: 12-Apr-2023
  • Izdevniecība: Springer International Publishing AG
  • Valoda: eng
  • ISBN-13: 9783031301056

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

The three-volume set LNCS 13623, 13624, and 13625 constitutes the refereed proceedings of the 29th International Conference on Neural Information Processing, ICONIP 2022, held as a virtual event, November 22–26, 2022.

The 146 papers presented in the proceedings set were carefully reviewed and selected from 810 submissions. They were organized in topical sections as follows: Theory and Algorithms; Cognitive Neurosciences; Human Centered Computing; and Applications.

The ICONIP conference aims to provide a leading international forum for researchers, scientists, and industry professionals who are working in neuroscience, neural networks, deep learning, and related fields to share their new ideas, progress, and achievements.



Theory and Algorithms.- Solving Partial Differential Equations using
Point-based Neural Networks.- Patch Mix Augmentation with Dual Encoders for
Meta-Learning.- Tacit Commitments Emergence in Multi-agent Reinforcement
Learning.- Saccade Direction Information Channel.- Shared-Attribute
Multi-Graph Clustering with Global Self-Attention.- Mutual Diverse-Label
Adversarial Training.- Multi-Agent Hyper-Attention Policy Optimization.-
Filter Pruning via Similarity Clustering for Deep Convolutional Neural
Networks.- FPD: Feature Pyramid Knowledge Distillation.- An effective
ensemble model related to incremental learning in neural machine
translation.- Local-Global Semantic Fusion Single-shot Classification
Method.- Self-Reinforcing Feedback Domain Adaptation Channel.- General
Algorithm for Learning from Grouped Uncoupled Data and Pairwise Comparison
Data.- Additional Learning for Joint Probability Distribution Matching in
BiGAN.- Multi-View Self-Attention for Regression Domain Adaptation with
Feature Selection.- EigenGRF: Layer-Wise Eigen-Learning for Controllable
Generative Radiance Fields.- Partial Label learning with Gradually Induced
Error-Correction Output Codes.- HMC-PSO: A Hamiltonian Monte Carlo and
Particle Swarm Optimization-based optimizer.- Heterogeneous Graph
Representation for Knowledge Tracing.- Intuitionistic fuzzy universum support
vector machine.- Support vector machine based models with sparse auto-encoder
based features for classification problem.- Selectively increasing the
diversity of GAN-generated samples.- Cooperation and Competition: Flocking
with Evolutionary Multi-Agent Reinforcement Learning.- Differentiable Causal
Discovery Under Heteroscedastic Noise.- IDPL: Intra-subdomain adaptation
adversarial learning segmentation method based on Dynamic Pseudo Labels.-
Adaptive Scaling for U-Net in Time Series Classification.- Permutation
Elementary Cellular Automata: Analysis and Application of Simple Examples.-
SSPR: A Skyline-Based Semantic Place Retrieval Method.- Double
Regularization-based RVFL and edRVFL Networks for Sparse-Dataset
Classification.- Adaptive Tabu Dropout for Regularization of Deep Neural
Networks.- Class-Incremental Learning with Multiscale Distillation for Weakly
Supervised Temporal Action Localization.- Nearest Neighbor Classifier with
Margin Penalty for Active Learning.- Factual Error Correction in
Summarization with Retriever-Reader Pipeline.- Context-adapted Multi-policy
Ensemble Method for Generalization in Reinforcement Learning.- Self-attention
based multi-scale graph convolutional networks.- Synesthesia Transformer with
Contrastive Multimodal Learning.- Context-based Point Generation Network for
Point Cloud Completion.- Temporal Neighborhood Change Centrality for
Important Node Identification in Temporal Networks.- DOM2R-Graph: A Web
Attribute Extraction Architecture with Relation-aware Heterogeneous Graph
Transformer.- Sparse Linear Capsules for Matrix Factorization-based
Collaborative Filtering.- PromptFusion: a Low-cost Prompt-based Task
Composition for Multi-task Learning.- A fast and efficient algorithm for
filtering the training dataset.- Entropy-minimization Mean Teacher for
Source-Free Domain Adaptive Object Detection.- IA-CL: A Deep Bidirectional
Competitive Learning Method for Traveling Salesman Problem.- Boosting Graph
Convolutional Networks With Semi-Supervised Training.- Auxiliary Network:
Scalable and agile online learning for dynamic system with inconsistently
available inputs.- VAAC: V-value Attention Actor-Critic for Cooperative
Multi-agent Reinforcement Learning.- An Analytical Estimation of Spiking
Neural Networks Energy Efficiency.- Correlation Based Semantic Transfer with
Application to Domain Adaptation.- Minimum Variance Embedded Intuitionistic
Fuzzy Weighted Random Vector Functional Link Network.- Neural Network
Compression by Joint Sparsity Promotion and Redundancy Reduction.