Chapter 1 Background on Neural Networks |
|
1 | (74) |
|
1.1 NN Topologies and Recall |
|
|
2 | (22) |
|
1.1.1 Neuron Mathematical Model |
|
|
3 | (5) |
|
1.1.2 Multilayer Perceptron |
|
|
8 | (4) |
|
1.1.3 Linear-in-the-Parameter NN |
|
|
12 | (3) |
|
1.1.3.1 Gaussian or Radial Basis Function Networks |
|
|
12 | (1) |
|
1.1.3.2 Cerebellar Model Articulation Controller Networks |
|
|
13 | (2) |
|
|
15 | (9) |
|
|
15 | (4) |
|
1.1.4.2 Generalized Recurrent NN |
|
|
19 | (5) |
|
|
24 | (11) |
|
1.2.1 Classification and Association |
|
|
25 | (6) |
|
|
25 | (3) |
|
|
28 | (3) |
|
1.2.2 Function Approximation |
|
|
31 | (4) |
|
1.3 NN Weight Selection and Training |
|
|
35 | (34) |
|
|
36 | (2) |
|
1.3.2 Training the One-Layer NN Gradient Descent |
|
|
38 | (9) |
|
1.3.2.1 Gradient Descent Tuning |
|
|
39 | (3) |
|
1.3.2.2 Epoch vs. Batch Updating |
|
|
42 | (5) |
|
1.3.3 Training the Multilayer NN Backpropagation Tuning |
|
|
47 | (20) |
|
|
49 | (2) |
|
1.3.3.2 Derivation of the Backpropagation Algorithm |
|
|
51 | (12) |
|
1.3.3.3 Improvements on Gradient Descent |
|
|
63 | (4) |
|
|
67 | (2) |
|
1.4 NN Learning and Control Architectures |
|
|
69 | (2) |
|
1.4.1 Unsupervised and Reinforcement Learning |
|
|
69 | (1) |
|
1.4.2 Comparison of the Two NN Control Architectures |
|
|
70 | (1) |
|
|
71 | (2) |
|
|
73 | (2) |
Chapter 2 Background and Discrete-Time Adaptive Control |
|
75 | (64) |
|
|
75 | (4) |
|
2.1.1 Discrete-Time Systems |
|
|
75 | (1) |
|
2.1.2 Brunovsky Canonical Form |
|
|
76 | (1) |
|
|
77 | (2) |
|
2.2 Mathematical Background |
|
|
79 | (4) |
|
2.2.1 Vector and Matrix Norms |
|
|
79 | (3) |
|
2.2.2 Continuity and Function Norms |
|
|
82 | (1) |
|
2.3 Properties of Dynamical Systems |
|
|
83 | (5) |
|
|
83 | (3) |
|
|
86 | (1) |
|
2.3.3 Interconnections of Passive Systems |
|
|
87 | (1) |
|
2.4 Nonlinear Stability Analysis and Controls Design |
|
|
88 | (14) |
|
2.4.1 Lyapunov Analysis for Autonomous Systems |
|
|
88 | (4) |
|
2.4.2 Controller Design Using Lyapunov Techniques |
|
|
92 | (5) |
|
2.4.3 Lyapunov Analysis for Nonautonomous Systems |
|
|
97 | (2) |
|
2.4.4 Extensions of Lyapunov Techniques and Bounded Stability |
|
|
99 | (3) |
|
|
102 | (25) |
|
|
104 | (7) |
|
2.5.1.1 Adaptive Control Formulation |
|
|
105 | (1) |
|
2.5.1.2 Stability of Dynamical Systems |
|
|
106 | (5) |
|
|
111 | (5) |
|
2.5.2.1 Structure of the STR and Error System Dynamics |
|
|
111 | (1) |
|
2.5.2.2 STR Parameter Updates |
|
|
112 | (4) |
|
2.5.3 Projection Algorithm |
|
|
116 | (1) |
|
2.5.4 Ideal Case: No Disturbances and No STR Reconstruction Errors |
|
|
117 | (2) |
|
2.5.5 Parameter-Tuning Modification for Relaxation of PE Condition |
|
|
119 | (4) |
|
2.5.6 Passivity Properties of the STR |
|
|
123 | (4) |
|
|
127 | (1) |
|
|
127 | (2) |
|
|
129 | (2) |
|
|
131 | (8) |
Chapter 3 Neural Network Control of Nonlinear Systems and Feedback Linearization |
|
139 | (126) |
|
3.1 NN Control with Discrete-Time Tuning |
|
|
142 | (55) |
|
3.1.1 Dynamics of the mnth Order Multi-Input and Multi-Output Discrete-Time Nonlinear System |
|
|
143 | (2) |
|
3.1.2 One-Layer NN Controller Design |
|
|
145 | (22) |
|
3.1.2.1 NN Controller Design |
|
|
146 | (1) |
|
3.1.2.2 Structure of the NN and Error System Dynamics |
|
|
147 | (1) |
|
3.1.2.3 Weight Updates of the NN for Guaranteed Tracking Performance |
|
|
148 | (7) |
|
3.1.2.4 Projection Algorithm |
|
|
155 | (1) |
|
3.1.2.5 Ideal Case: No Disturbances and No NN Reconstruction Errors |
|
|
156 | (4) |
|
3.1.2.6 Parameter Tuning Modification for Relaxation of PE Condition |
|
|
160 | (7) |
|
3.1.3 Multilayer NN Controller Design |
|
|
167 | (24) |
|
3.1.3.1 Error Dynamics and NN Controller Structure |
|
|
170 | (2) |
|
3.1.3.2 Multilayer NN Weight Updates |
|
|
172 | (7) |
|
3.1.3.3 Projection Algorithm |
|
|
179 | (6) |
|
3.1.3.4 Multilayer NN Weight-Tuning Modification for Relaxation of PE Condition |
|
|
185 | (6) |
|
3.1.4 Passivity of the NN |
|
|
191 | (6) |
|
3.1.4.1 Passivity Properties of the Tracking Error System |
|
|
191 | (1) |
|
3.1.4.2 Passivity Properties of One-Layer NN |
|
|
192 | (3) |
|
3.1.4.3 Passivity of the Closed-Loop System |
|
|
195 | (1) |
|
3.1.4.4 Passivity of the Multilayer NN |
|
|
196 | (1) |
|
3.2 Feedback Linearization |
|
|
197 | (3) |
|
3.2.1 InputOutput Feedback Linearization Controllers |
|
|
197 | (2) |
|
|
198 | (1) |
|
|
199 | (1) |
|
3.3 NN Feedback Linearization |
|
|
200 | (54) |
|
3.3.1 System Dynamics and Tracking Problem |
|
|
201 | (3) |
|
3.3.2 NN Controller Design for Feedback Linearization |
|
|
204 | (7) |
|
3.3.2.1 NN Approximation of Unknown Functions |
|
|
204 | (2) |
|
3.3.2.2 Error System Dynamics |
|
|
206 | (3) |
|
3.3.2.3 Well-Defined Control Problem |
|
|
209 | (1) |
|
3.3.2.4 Controller Design |
|
|
210 | (1) |
|
3.3.3 One-Layer NN for Feedback Linearization |
|
|
211 | (22) |
|
3.3.3.1 Weight Updates Requiring PE |
|
|
211 | (11) |
|
3.3.3.2 Projection Algorithm |
|
|
222 | (1) |
|
3.3.3.3 Weight Updates not Requiring PE |
|
|
223 | (10) |
|
3.4 Multilayer NN for Feedback Linearization |
|
|
233 | (21) |
|
3.4.1 Weight Updates Requiring PE |
|
|
234 | (2) |
|
3.4.2 Weight Updates Not Requiring PE |
|
|
236 | (18) |
|
3.5 Passivity Properties of the NN |
|
|
254 | (5) |
|
3.5.1 Passivity Properties of the Tracking Error System |
|
|
255 | (1) |
|
3.5.2 Passivity Properties of One-Layer NN Controllers |
|
|
256 | (1) |
|
3.5.3 Passivity Properties of Multilayer NN Controllers |
|
|
256 | (3) |
|
|
259 | (1) |
|
|
259 | (3) |
|
|
262 | (3) |
Chapter 4 Neural Network Control of Uncertain Nonlinear Discrete-Time Systems with Actuator Nonlinearities |
|
265 | (78) |
|
4.1 Background on Actuator Nonlinearities |
|
|
266 | (8) |
|
|
266 | (3) |
|
4.1.1.1 Static Friction Models |
|
|
267 | (1) |
|
4.1.1.2 Dynamic Friction Models |
|
|
268 | (1) |
|
|
269 | (3) |
|
|
272 | (1) |
|
|
273 | (1) |
|
4.2 Reinforcement NN Learning Control with Saturation |
|
|
274 | (23) |
|
4.2.1 Nonlinear System Description |
|
|
276 | (1) |
|
4.2.2 Controller Design Based on the Filtered Tracking Error |
|
|
277 | (2) |
|
4.2.3 One-Layer NN Controller Design |
|
|
279 | (4) |
|
4.2.3.1 The Strategic Utility Function |
|
|
279 | (1) |
|
|
280 | (1) |
|
|
281 | (2) |
|
4.2.4 NN Controller without Saturation Nonlinearity |
|
|
283 | (4) |
|
4.2.5 Adaptive NN Controller Design with Saturation Nonlinearity |
|
|
287 | (9) |
|
4.2.5.1 Auxiliary System Design |
|
|
287 | (1) |
|
4.2.5.2 Adaptive NN Controller Structure with Saturation |
|
|
288 | (1) |
|
4.2.5.3 Closed-Loop System Stability Analysis |
|
|
288 | (8) |
|
4.2.6 Comparison of Tracking Error and Reinforcement Learning-Based Controls Design |
|
|
296 | (1) |
|
4.3 Uncertain Nonlinear System with Unknown Deadzone and Saturation Nonlinearities |
|
|
297 | (12) |
|
4.3.1 Nonlinear System Description and Error Dynamics |
|
|
300 | (1) |
|
4.3.2 Deadzone Compensation with Magnitude Constraints |
|
|
300 | (4) |
|
4.3.2.1 Deadzone Nonlinearity |
|
|
300 | (1) |
|
4.3.2.2 Compensation of Deadzone Nonlinearity |
|
|
301 | (2) |
|
4.3.2.3 Saturation Nonlinearities |
|
|
303 | (1) |
|
4.3.3 Reinforcement Learning NN Controller Design |
|
|
304 | (5) |
|
|
304 | (1) |
|
|
305 | (1) |
|
|
306 | (3) |
|
4.4 Adaptive NN Control of Nonlinear System with Unknown Backlash |
|
|
309 | (10) |
|
4.4.1 Nonlinear System Description |
|
|
310 | (1) |
|
4.4.2 Controller Design Using Filtered Tracking Error without Backlash Nonlinearity |
|
|
311 | (1) |
|
4.4.3 Backlash Compensation Using Dynamic Inversion |
|
|
312 | (7) |
|
|
319 | (1) |
|
|
320 | (3) |
|
|
323 | (2) |
|
|
325 | (4) |
|
|
329 | (1) |
|
|
330 | (8) |
|
|
338 | (5) |
Chapter 5 Output Feedback Control of Strict Feedback Nonlinear MIMO Discrete-Time Systems |
|
343 | (28) |
|
5.1 Class of Nonlinear Discrete-Time Systems |
|
|
345 | (1) |
|
5.2 Output Feedback Controller Design |
|
|
345 | (5) |
|
|
346 | (1) |
|
5.2.2 NN Controller Design |
|
|
347 | (3) |
|
5.2.2.1 Auxiliary Controller Design |
|
|
348 | (1) |
|
5.2.2.2 Controller Design with Magnitude Constraints |
|
|
349 | (1) |
|
5.3 Weight Updates for Guaranteed Performance |
|
|
350 | (11) |
|
5.3.1 Weights Updating Rule for the Observer NN |
|
|
350 | (1) |
|
5.3.2 Strategic Utility Function |
|
|
351 | (1) |
|
|
351 | (2) |
|
5.3.4 Weight-Updating Rule for the Action NN |
|
|
353 | (8) |
|
|
361 | (1) |
|
|
362 | (1) |
|
|
363 | (1) |
|
|
364 | (2) |
|
|
366 | (5) |
Chapter 6 Neural Network Control of Nonstrict Feedback Nonlinear Systems |
|
371 | (52) |
|
|
371 | (3) |
|
6.1.1 Nonlinear Discrete-Time Systems in Nonstrict Feedback Form |
|
|
371 | (2) |
|
6.1.2 Backstepping Design |
|
|
373 | (1) |
|
6.2 Adaptive NN Control Design Using State Measurements |
|
|
374 | (18) |
|
6.2.1 Tracking Error-Based Adaptive NN Controller Design |
|
|
375 | (6) |
|
6.2.1.1 Adaptive NN Backstepping Controller Design |
|
|
375 | (3) |
|
|
378 | (3) |
|
6.2.2 Adaptive Critic-Based NN Controller Design |
|
|
381 | (11) |
|
|
382 | (1) |
|
6.2.2.2 Weight-Tuning Algorithms |
|
|
383 | (9) |
|
6.3 Output Feedback NN Controller Design |
|
|
392 | (14) |
|
|
394 | (2) |
|
6.3.2 Adaptive NN Controller Design |
|
|
396 | (4) |
|
6.3.3 Weight Updates for the Output Feedback Controller |
|
|
400 | (6) |
|
|
406 | (1) |
|
|
407 | (2) |
|
|
409 | (2) |
|
|
411 | (8) |
|
|
419 | (4) |
Chapter 7 System Identification Using Discrete-Time Neural Networks |
|
423 | (24) |
|
7.1 Identification of Nonlinear Dynamical Systems |
|
|
425 | (1) |
|
7.2 Identifier Dynamics for MIMO Systems |
|
|
426 | (3) |
|
|
429 | (10) |
|
7.3.1 Structure of the NN Identifier and Error System Dynamics |
|
|
430 | (2) |
|
7.3.2 Multilayer NN Weight Updates |
|
|
432 | (7) |
|
7.4 Passivity Properties of the NN |
|
|
439 | (4) |
|
|
443 | (1) |
|
|
444 | (1) |
|
|
444 | (3) |
Chapter 8 Discrete-Time Model Reference Adaptive Control |
|
447 | (26) |
|
8.1 Dynamics of an mnth-Order Multi-Input and Multi-Output System |
|
|
448 | (3) |
|
|
451 | (9) |
|
8.2.1 NN Controller Structure and Error System Dynamics |
|
|
451 | (3) |
|
8.2.2 Weight Updates for Guaranteed Tracking Performance |
|
|
454 | (6) |
|
|
460 | (8) |
|
|
468 | (1) |
|
|
469 | (1) |
|
|
470 | (3) |
Chapter 9 Neural Network Control in Discrete-Time Using HamiltonJacobiBellman Formulation |
|
473 | (38) |
|
9.1 Optimal Control and Generalized HJB Equation in Discrete-Time |
|
|
475 | (11) |
|
9.2 NN Least-Squares Approach |
|
|
486 | (4) |
|
|
490 | (18) |
|
|
508 | (1) |
|
|
508 | (1) |
|
|
509 | (2) |
Chapter 10 Neural Network Output Feedback Controller Design and Embedded Hardware Implementation |
|
511 | (84) |
|
10.1 Embedded Hardware-PC Real-Time Digital Control System |
|
|
512 | (2) |
|
10.1.1 Hardware Description |
|
|
512 | (2) |
|
10.1.2 Software Description |
|
|
514 | (1) |
|
|
514 | (9) |
|
10.2.1 Engine-PC Interface Hardware Operation |
|
|
516 | (2) |
|
|
518 | (2) |
|
10.2.3 Timing Specifications for Controller |
|
|
520 | (1) |
|
10.2.4 Software Implementation |
|
|
521 | (2) |
|
10.3 Lean Engine Controller Design and Implementation |
|
|
523 | (24) |
|
|
526 | (2) |
|
10.3.2 NN Observer Design |
|
|
528 | (2) |
|
10.3.3 Adaptive NN Output Feedback Controller Design |
|
|
530 | (7) |
|
10.3.3.1 Adaptive NN Backstepping Design |
|
|
531 | (4) |
|
10.3.3.2 Weight Updates for Guaranteed Performance |
|
|
535 | (2) |
|
10.3.4 Simulation of NN Controller C Implementation |
|
|
537 | (2) |
|
10.3.5 Experimental Results |
|
|
539 | (8) |
|
10.4 EGR Engine Controller Design and Implementation |
|
|
547 | (16) |
|
10.4.1 Engine Dynamics with EGR |
|
|
549 | (2) |
|
10.4.2 NN Observer Design |
|
|
551 | (2) |
|
10.4.3 Adaptive Output Feedback EGR Controller Design |
|
|
553 | (6) |
|
|
554 | (3) |
|
10.4.3.2 Weight Updates for Guaranteed Performance |
|
|
557 | (2) |
|
10.4.4 Numerical Simulation on |
|
|
559 | (4) |
|
|
563 | (1) |
|
|
564 | (1) |
|
|
565 | (1) |
|
|
566 | (4) |
|
|
570 | (25) |
Index |
|
595 | |