Atjaunināt sīkdatņu piekrišanu

E-grāmata: Neural Text-to-Speech Synthesis

  • Formāts - EPUB+DRM
  • Cena: 154,65 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

Text-to-speech (TTS) aims to synthesize intelligible and natural speech based on the given text. It is a hot topic in language, speech, and machine learning research and has broad applications in industry. This book introduces neural network-based TTS in the era of deep learning, aiming to provide a good understanding of neural TTS, current research and applications, and the future research trend.





This book first introduces the history of TTS technologies and overviews neural TTS, and provides preliminary knowledge on language and speech processing, neural networks and deep learning, and deep generative models. It then introduces neural TTS from the perspective of key components (text analyses, acoustic models, vocoders, and end-to-end models) and advanced topics (expressive and controllable, robust, model-efficient, and data-efficient TTS). It also points some future research directions and collects some resources related to TTS.





This book is the first to introduceneural TTS in a comprehensive and easy-to-understand way and can serve both academic researchers and industry practitioners working on TTS.


Xu Tan is a Principal Researcher and Research Manager at Microsoft Research Asia. His research interests cover deep learning and its applications in language/speech/music processing and digital human creation. He has rich research experience in text-to-speech synthesis. He has developed high-quality TTS systems such as FastSpeech 1/2 (widely used in the TTS community), DelightfulTTS (winning the champion of the Blizzard TTS Challenge), and NaturalSpeech (achieving human-level quality on the TTS benchmark dataset), and transferred many research works to improve the experience of Microsoft Azure TTS services. He has given a series of tutorials on TTS at top conferences such as IJCAI, ICASSP, and INTERSPEECH, and written a comprehensive survey paper on TTS.





Besides speech synthesis, he has designed several popular language models (e.g., MASS) and AI music systems (e.g., Muzic), developed machine translation systems that achieved human parity in Chinese-English translation and won several champions in WMT machine translation competitions. He has published over 100 papers at prestigious conferences such as ICML, NeurIPS, ICLR, AAAI, IJCAI, ACL, EMNLP, NAACL, ICASSP, INTERSPEECH, KDD, and IEEE/ACM Transactions, and served as the area chair or action editor of some AI conferences and journals (e.g., NeurIPS, AAAI, ICASSP, TMLR).