Atjaunināt sīkdatņu piekrišanu

E-grāmata: Neurorehabilitation Technology

  • Formāts: PDF+DRM
  • Izdošanas datums: 03-Aug-2016
  • Izdevniecība: Springer International Publishing AG
  • Valoda: eng
  • ISBN-13: 9783319286037
  • Formāts - PDF+DRM
  • Cena: 130,27 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: PDF+DRM
  • Izdošanas datums: 03-Aug-2016
  • Izdevniecība: Springer International Publishing AG
  • Valoda: eng
  • ISBN-13: 9783319286037

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

Thisrevised, updated second edition provides an accessible, practical overview ofmajor areas of technical development and clinical application in the field ofneurorehabilitation movement therapy. The initial section provides a rationalefor technology application in movement therapy by summarizing recent findingsin neuroplasticity and motor learning. The following section thenexplains the state of the art in human-machine interaction requirements forclinical rehabilitation practice. Subsequent sections describe the ongoingrevolution in robotic therapy for upper extremity movement and for walking, andthen describe other emerging technologies including electrical stimulation,virtual reality, wearable sensors, and brain-computer interfaces. The promisesand limitations of these technologies in neurorehabilitation are discussed.Throughout the book the chapters provide detailed practical information onstate-of-the-art clinical applications of these devices following stroke,

spinal cord injury, and other neurologic disorders. The text is illustratedthroughout with photographs and schematic diagrams which serve to clarify theinformation for the reader.NeurorehabilitationTechnology, Second Edition is a valuableresource for neurologists, biomedical engineers, roboticists, rehabilitationspecialists, physiotherapists, occupational therapists and those training inthese fields.

Introduction: Rationale for Machine Use.- Part I Basic Framework: Motor Recovery,Learning, and Neural Impairment .- Learning in the Damaged Brain/SpinalCord: Neuroplasticity.- Movement Neuroscience Foundations ofNeurorehabilitation.- Designing Robots That Challenge to Optimize MotorLearning.- Multisystem Neurorehabilitation in Rodents with Spinal Cord Injury.-Sensory-Motor Interactions and Error Augmentation.- Normal and Impaired Cooperative HandMovements: Role of Neural Coupling.- Clinical Assessment and Rehabilitation ofthe Upper Limb Following Cervical Spinal Cord Injury.- PartII Human-Machine Interaction in Rehabilitation Practice .- Application Issues for Robotics.- The Human in the Loop.- Roboticand wearable sensor technologies for measurements/clinical assessments.- ClinicalAspects for the Application of Robotics in Neurorehabilitation.-Clinical Application of Robotics and Technology in Restoration of Walking.- Standardsand Safety Aspects for Medical Devices in

the Field of Neurorehabilitation.- ClinicalApplication of Rehabilitation Technologies in Children and Youths UndergoingNeurorehabilitation.- Part III Robotsfor Upper Extremity Recovery .- Restorationof Hand Function in Stroke and Spinal Cord Injury.- Forging Mens et Manus: theMIT Experience in Upper Extremity Robotic Therapy.- Three-DimensionalMulti-Degree-of-Freedom Arm Therapy Robot (ARMin).- Implementation ofImpairment Based Neuro-Rehabilitation Devices and Technologies following BrainInjury.- Part IV Robotics for LocomotionRecovery .- Technology of the Robotic Gait Orthosis Lokomat.- Beyond Humanor Robot Administered Treadmill Training.- Toward Flexible Assistance forLocomotor Training: Design and Clinical Testing of a Cable-Driven Robot forStroke, Spinal Cord Injury, and Cerebral Palsy.- Robot-Aided Gait Training withLOPES.- Robotic Devices for Overground Gait and Balance Training.- UsingRobotic Exoskeletons for Overground Locomotor Training.- Functional Electri

calStimulation Therapy: Recovery of Function Following Spinal Cord Injury andStroke.- Passive Devices for Upper Limb Training.- Upper-Extremity Therapywith Spring Orthoses.- Virtual Reality for Sensorimotor RehabilitationPost-Stroke: Design Principles and Evidence.- Wearable Sensors forRehabilitation.- BCI-based Neuroprostheses and Physiotherapies for Stroke MotorRehabilitation.- Epilogue: What Lies Ahead?

Recenzijas

This well written and comprehensive book reviews fundamental principles and practical applications of technology used in neurorehabilitation. This book can be used by engineers, scientists, and rehabilitation clinicians who are interested in obtaining an in-depth understanding of various forms of rehabilitation technology. It also represents a step above the first edition, and would be a unique and useful contribution to a rehabilitation library. (Elliot J. Roth, Doodys Book Reviews, April, 2017)

Preface to the Second Edition v
Introduction: Rationale for Machine Use xvii
Part I Basic Framework: Motor Recovery, Learning, and Neural Impairment
1 Learning in the Damaged Brain/Spinal Cord: Neuroplasticity
3(16)
Andreas Luft
Amy J. Bastian
Volker Dietz
2 Movement Neuroscience Foundations of Neurorehabilitation
19(20)
Robert L. Sainburg
Pratik K. Mutha
3 Designing Robots That Challenge to Optimize Motor Learning
39(20)
David A. Brown
Timothy D. Lee
David J. Reinkensmeyer
Jaime E. Duarte
4 Multisystem Neurorehabilitation in Rodents with Spinal Cord Injury
59(20)
Gregoire Courtine
Rubia van den Brand
Roland R. Roy
V. Reggie Edgerton
5 Sensory-Motor Interactions and Error Augmentation
79(18)
James L. Patton
Felix C. Huang
6 Normal and Impaired Cooperative Hand Movements: Role of Neural Coupling
97(10)
Miriam Schrafl-Altermatt
Volker Dietz
7 Clinical Assessment and Rehabilitation of the Upper Limb Following Cervical Spinal Cord Injury
107(34)
Michelle Louise Starkey
Armin Curt
Part II Human-Machine Interaction in Rehabilitation Practice
8 Application Issues for Robotics
141(20)
Markus Wirz
Rudiger Rupp
9 The Human in the Loop
161(22)
Alexander C. Koenig
Robert Riener
10 Robotic and Wearable Sensor Technologies for Measurements/Clinical Assessments
183(26)
Olivier Lambercy
Serena Maggioni
Lars Lunenburger
Roger Gassert
Marc Bolliger
11 Clinical Aspects for the Application of Robotics in Locomotor Neurorehabilitation
209(14)
Volker Dietz
12 Clinical Application of Robotics and Technology in the Restoration of Walking
223(26)
Alberto Esquenazi
Irin C. Maier
Tabea Aurich Schuler
Serafin M. Beer
Ingo Borggraefe
Katrin Campen
Andreas R. Luft
Dimitrios Manoglou
Andreas Meyer-Heim
Martina R. Spiess
Markus Wirz
13 Standards and Safety Aspects for Medical Devices in the Field of Neurorehabilitation
249(34)
Burkhard Zimmermann
14 Clinical Application of Rehabilitation Technologies in Children Undergoing Neurorehabilitation
283(28)
Hubertus J. A. van Hedel
Tabea Aurich
Part III Robots for Upper Extremity Recovery
15 Restoration of Hand Function in Stroke and Spinal Cord Injury
311(22)
Derek G. Kamper
16 Forging Mens et Manus: The MIT Experience in Upper Extremity Robotic Therapy
333(18)
Hermano Igo Krebs
Dylan Edwards
Neville Hogan
17 Three-Dimensional Multi-degree-of-Freedom Arm Therapy Robot (ARMin)
351(24)
Tobias Nef
Verena Klamroth-Marganska
Urs Keller
Robert Riener
18 Implementation of Impairment-Based Neurorehabilitation Devices and Technologies Following Brain Injury
375(20)
Jules P. A. Dewald
Michael D. Ellis
Ana Maria Acosta
Jacob G. McPherson
Arno H. A. Stienen
Part IV Robotics for Locomotion Recovery
19 Technology of the Robotic Gait Orthosis Lokomat
395(14)
Robert Riener
20 Beyond Human or Robot Administered Treadmill Training
409(26)
Hermano Igo Krebs
Konstantinos Michmizos
Tyler Susko
Hyunglae Lee
Anindo Roy
Neville Hogan
21 Toward Flexible Assistance for Locomotor Training: Design and Clinical Testing of a Cable-Driven Robot for Stroke, Spinal Cord Injury, and Cerebral Palsy
435(26)
Ming Wu
Jill M. Landry
22 Robot-Aided Gait Training with LOPES
461(22)
Edwin H. F. van Asseldonk
Herman van der Kooij
23 Robotic Devices for Overground Gait and Balance Training
483(10)
Joseph M. Hidler
Arno H. A. Stienen
Heike Vallery
24 Using Robotic Exoskeletons for Over-Ground Locomotor Training
493(20)
Arun Jayaraman
Sheila Burt
William Zev Rymer
25 Functional Electrical Stimulation Therapy: Recovery of Function Following Spinal Cord Injury and Stroke
513(20)
Milos R. Popovic
Kei Masani
Silvestro Micera
26 Passive Devices for Upper Limb Training
533(20)
Arthur Prochazka
27 Upper-Extremity Therapy with Spring Orthoses
553(20)
David J. Reinkensmeyer
Daniel K. Zondervan
28 Virtual Reality for Sensorimotor Rehabilitation Post Stroke: Design Principles and Evidence
573(32)
Sergi Bermudez i Badia
Gerard G. Fluet
Roberto Llorens
Judith E. Deutsch
29 Wearable Wireless Sensors for Rehabilitation
605(12)
Andrew K. Dorsch
Christine E. King
Bruce H. Dobkin
30 BCI-Based Neuroprostheses and Physiotherapies for Stroke Motor Rehabilitation
617(12)
Colin M. McCrimmon
Po T. Wang
Zoran Nenadic
An H. Do
Epilogue: What Lies Ahead? 629(4)
Index 633
David J. Reinkensmeyer



David Reinkensmeyer is Professor in the Departments of Mechanical and Aerospace Engineering, Anatomy and Neurobiology, Biomedical Engineering, and Physical Medicine and Rehabilitation at the University of California Irvine. His research interests are in neuromuscular control, motor learning, robotics, and rehabilitation. A major goal of his research is to develop physically interacting, robotic and mechatronic devices to help the nervous system recover the ability to control movement of the arm, hand, and leg after neurologic injuries such as stroke and spinal cord injury. He is also investigating the computational mechanisms of human motor learning in order to provide a rational basis for designing movement training devices. He is Editor-in-Chief of the Journal of Neuroengineering and Rehabilitation.  His laboratory has helped develop a variety of robotic devices for manipulating and measuring movement in humans and rodents, including two devices that have been successfully commercialized as Flint Rehabilitations MusicGlove and as Hocomas ArmeoSpring.











Volker Dietz

Volker Dietz, neurologist,  is Professor emeritus and former Director of Spinal Cord Injury Center and Chair of Paraplegiology, University of Zürich, Balgrist Hospital, Switzerland. His research is focused on neuroplasticity, neurorehabilitation technology and regeneration. He retired in 2009, having worked at the University of Zürich since 1992. Presently he is Senior Research Professor at the University Hospital Balgrist. Previously he had an educational grant at the National Institute for Neurology, Queen Square, London. Afterwards he held a position at the University of Freiburg and was guest professor at the Miami project to cure paralysis. He has been on the editorial board of the several journals of neurology and neurosciences. He has been awarded various honors and awards including the Schellenberg Prize for outstanding research in paraplegia in 2012.