Atjaunināt sīkdatņu piekrišanu

E-grāmata: New Boundary Element Formulation in Engineering

  • Formāts: PDF+DRM
  • Sērija : Lecture Notes in Engineering 68
  • Izdošanas datums: 12-Mar-2013
  • Izdevniecība: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • Valoda: eng
  • ISBN-13: 9783642845048
Citas grāmatas par šo tēmu:
  • Formāts - PDF+DRM
  • Cena: 106,47 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: PDF+DRM
  • Sērija : Lecture Notes in Engineering 68
  • Izdošanas datums: 12-Mar-2013
  • Izdevniecība: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • Valoda: eng
  • ISBN-13: 9783642845048
Citas grāmatas par šo tēmu:

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

1. 1 The Hybrid Displacement Boundary Element Model This work is concerned with the derivation of a numerical model for the solution of boundary-value problems in potential theory and linear elasticity. It is considered a boundary element model because the final integral equation involves some boundary integrals, whose evaluation requires a boundary discretization. Furthermore, all the unknowns are boundary vari­ ables. The model is completely new; it differs from the classical boundary element formulation ·in the way it is generated and consequently in the fi­ nal equations. A generalized variational principle is used as a basis for its derivation, whereas the conventional boundary element formulation is based on Green's formula (potential problems) and on Somigliana's identity (elas­ ticity), or alternatively through the weighted residual technique. 2 The multi-field variational principle which generates the formulation in­ volves three independent variables. For potential problems, these are the potential in the domain and the potential and its normal derivative on the boundary. In the case of elasticity, these variables are displacements in the domain and displacements and tractions on the boundary. For this reason, by analogy with the assumed displacement hybrid finite element model, ini­ tially proposed by Tong [ 1] in 1970, it can be called a hybrid displacement model. The final system of equations to be solved is similar to that found in a stiffness formulation. The stiffness matrix for this model is symmetric and can be evaluated by only performing integrations along the boundary.

Papildus informācija

Springer Book Archives
1 Introduction.- 1.1 The Hybrid Displacement Boundary Element Model.- 1.2 Historical Development of Variational Principles.- 1.3 Variational Principles and Finite Element Models.- 1.4 Boundary Element Method Fundamentals.- 1.5 Boundary Element Variational Formulations.- 2 Potential Problems.- 2.1 Introduction.- 2.2 Indicial Notation.- 2.3 Basic Equations.- 2.4 Generalized Variational Principle.- 2.5 Derivation of the Model.- 2.6 Symmetry of the Stiffness Matrix.- 3 Numerical Aspects in Potential Problems.- 3.1 Introduction.- 3.2 The Constant Element.- 3.3 The Quadratic Element.- 3.4 The Vector B.- 4 Elastostatics.- 4.1 Introduction.- 4.2 Basic Relations in Linear Elastostatics.- 4.3 Modified Variational Principle.- 4.4 Derivation of the Model.- 5 Numerical Aspects in Elastostatics Problems.- 5.1 Introduction.- 5.2 The Constant Element.- 5.3 The Quadratic Element.- 5.4 Computation of the Submatrices Fii.- 5.5 Body Forces.- 6 Numerical Applications.- 6.1 Introduction.- 6.2 Examples for Potential Problems.- 6.3 Elasticity Problems.- 7 Conclusions.- 8 Bibliography.