Atjaunināt sīkdatņu piekrišanu

E-grāmata: New Millennium Solar Physics

  • Formāts - EPUB+DRM
  • Cena: 213,54 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

This is a follow-on book to the introductory textbook "Physics of the Solar Corona" previously published in 2004 by the same author, which provided a systematic introduction and covered mostly scientific results from the pre-2000 era. Using a similar structure as the previous book the second volume provides a seamless continuation of numerous novel research results in solar physics that emerged in the new millennium (after 2000) from the new solar missions of RHESSI, STEREO, Hinode, CORONAS, and the Solar Dynamics Observatory (SDO) during the era of 2000-2018. The new solar space missions are characterized by unprecedented high-resolution imaging, time resolution, spectral capabilities, stereoscopy and tomography, which reveal the intricate dynamics of magneto-hydrodynamic processes in the solar corona down to scales of 100 km. The enormous amount of data streaming down from SDO in Terabytes per day requires advanced automated data processing methods. The book focuses exclusively on new research results after 2000, which are reviewed in a comprehensive manner, documented by over 3600 literature references, covering theory, observations, and numerical modeling of basic physical processes that are observed in high-temperature plasmas of the Sun and other astrophysical objects, such as plasma instabilities, coronal heating, magnetic reconnection processes, coronal mass ejections, plasma waves and oscillations, or particle acceleration.

1 New Solar Instrumentation
1(50)
1.1 Solar Missions Overview and Moore's Law
1(4)
1.2 The RHESSI Mission
5(3)
1.3 The STEREO Mission
8(3)
1.4 The Hinode Mission
11(4)
1.5 The SDO Mission
15(3)
1.6 The IRIS Mission
18(3)
1.7 The CORONAS Missions
21(3)
1.8 Solar-Terrestrial Space Missions
24(3)
1.9 Suborbital and Balloon Flights
27(3)
1.10 Radio Instrumentation
30(3)
1.11 Optical and Infrared Instrumentation
33(3)
1.12 Future Solar Instrumentation
36(4)
References
40(11)
2 Atomic Physics and Spectroscopy
51(38)
2.1 Photospheric Elemental Abundances
51(4)
2.2 The First-Ionization-Potential (FIP) Effect
55(3)
2.3 The CHIANTI Atomic Database
58(2)
2.4 Solar Emission Line Spectroscopy
60(3)
2.5 Instrumental Temperature Response Functions
63(2)
2.6 Differential Emission Measure Analysis Methods
65(4)
2.7 Multi-Thermal Energy
69(4)
2.8 Density-Sensitive Line Ratio Diagnostics
73(3)
2.9 Line Profile Diagnostics
76(4)
References
80(9)
3 The Solar Interior
89(44)
3.1 Solar Neutrino Problem Solved
89(4)
3.2 New Solar Standard Models
93(4)
3.3 Helioseismology: Meridional Flows
97(3)
3.4 Helioseismology: Solar Interior Rotation
100(3)
3.5 Local Helioseismology
103(4)
3.6 Limit-Cycle Oscillations of the Solar Dynamo
107(4)
3.7 Solar Cycle Prediction
111(3)
3.8 Magneto-Convection and Convective Dynamos
114(4)
3.9 Magnetic Flux Emergence
118(3)
3.10 Magnetic Helicity Injection and Condensation
121(4)
References
125(8)
4 The Photosphere and Sunspots
133(42)
4.1 Solar Diameter and Oblateness
133(3)
4.2 Magnetic Flux Distribution
136(4)
4.3 Bimodal Magnetic Area Distributions
140(4)
4.4 The Multi-Fractal Photosphere
144(3)
4.5 Mini-Granulation
147(3)
4.6 Quiet-Sun and Polar Fields
150(3)
4.7 Penumbral Dynamics
153(4)
4.8 Rotating Sunspots
157(3)
4.9 Sunspot Light Bridges
160(3)
4.10 Photospheric Waves and Oscillations
163(3)
References
166(9)
5 The Chromosphere and Spicules
175(44)
5.1 Chromospheric Models
175(2)
5.2 Chromospheric Fibrils
177(4)
5.3 Chromospheric Oscillations
181(3)
5.4 Chromospheric Alfven Waves
184(3)
5.5 Type-II Spicules
187(4)
5.6 Chromospheric Jets: Observations
191(3)
5.7 Chromospheric Jets: Numerical Simulations
194(4)
5.8 Ellerman Bombs
198(3)
5.9 Chromosphere: Kelvin-Helmholtz Instability
201(3)
5.10 Chromospheric Heating Models
204(4)
References
208(11)
6 The Quiet-Sun Corona
219(42)
6.1 Solar Eclipses
219(3)
6.2 Quiet Sun: Flows and Jets
222(3)
6.3 Quiet Sun: Cyclones and Tornadoes
225(3)
6.4 Quiet Sun: Magnetic Field
228(3)
6.5 Quiet Sun: Photosphere-Corona Connectivity
231(4)
6.6 Quiet Sun: Alfvenic Waves
235(3)
6.7 Quiet Sun: Heating Mechanisms
238(3)
6.8 Quiet Sun: EUV Nanofiare Energetics
241(4)
6.9 Quiet Sun: Fluxtube Braiding
245(3)
6.10 Quiet Sun: Radio Emission
248(3)
References
251(10)
7 Coronal Holes and Jets
261(42)
7.1 Coronal Holes: Magnetic Field
261(3)
7.2 Coronal Holes: Plumes
264(4)
7.3 Coronal Holes: Jets
268(3)
7.4 Coronal Holes: Blowout Jets
271(3)
7.5 Coronal Holes: Boundaries
274(3)
7.6 Coronal Holes: MHD Waves
277(4)
7.7 Coronal Holes: Heating Mechanisms
281(2)
7.8 Coronal Holes: Fast Solar Wind Acceleration
283(3)
7.9 Coronal Holes: Radio Emission
286(3)
7.10 Coronal Holes: Solar Cycle Modulation
289(3)
References
292(11)
8 Active Regions
303(40)
8.1 Active Regions: Magnetic Field Modeling
303(3)
8.2 Active Regions: Magnetic Nonpotentiality
306(3)
8.3 Active Regions: Magnetic Helicity
309(3)
8.4 Active Regions: Tomography Methods
312(3)
8.5 Active Regions: High-Temperature Emission
315(3)
8.6 Active Regions: Plasma Outflows
318(3)
8.7 Active Regions: Heating
321(3)
8.8 Active Regions: 3-D MHD Simulations
324(3)
8.9 Active Regions: Correlations
327(3)
8.10 Active Regions: Coronal Streamers
330(2)
References
332(11)
9 Coronal Loops
343(40)
9.1 Coronal Loops: Stereoscopy and 3-D Geometry
343(3)
9.2 Coronal Loops: Cross-Sectional Widths
346(3)
9.3 Coronal Loops: Multi-Strand Structure
349(3)
9.4 Coronal Loops: Cross-Sectional Temperature
352(2)
9.5 Coronal Loops: Flows
354(3)
9.6 Coronal Loops: Catastrophic Cooling
357(3)
9.7 Coronal Loops: Heating Function
360(3)
9.8 Coronal Loops: The 0-D EBTEL Code
363(3)
9.9 Coronal Loops: 1-D Hydrodynamics
366(4)
9.10 Coronal Loops: Magnetic Modeling
370(3)
References
373(10)
10 Coronal Loop Oscillations and Waves
383(40)
10.1 Coronal Loop Oscillations: Transverse Waves
383(2)
10.2 Coronal Loop Oscillations: Wave Damping
385(3)
10.3 Coronal Loop Oscillations: Vertical Polarization
388(3)
10.4 Coronal Loop Oscillations: 3-D Kinematics
391(3)
10.5 Coronal Loop Oscillations: Multi-Stranded Loop Systems
394(4)
10.6 Coronal Loop Oscillations: Magnetic Field
398(2)
10.7 Coronal Loop Oscillations: Longitudinal Waves
400(5)
10.8 Coronal Loop Oscillations: Optical and Radio
405(3)
10.9 Coronal Loop Oscillations: MHD Simulations
408(1)
10.10 Coronal Loop Oscillations: Harmonics
409(4)
References
413(10)
11 Filaments and Prominences
423(40)
11.1 Filaments/Prominences: Stereoscopy
423(2)
11.2 Filaments/Prominences: Magnetic Field
425(4)
11.3 Filaments/Prominences: Formation
429(2)
11.4 Filaments/Prominences: MHD
431(4)
11.5 Filaments/Prominences: Non-Equilibrium
435(3)
11.6 Filaments/Prominences: Oscillations and Waves (Observations)
438(2)
11.7 Filaments/Prominences: Oscillations and Waves (Theory)
440(1)
11.8 Rayleigh-Taylor and Kelvin-Helmholtz Instability
441(4)
11.9 Coronal Cavities
445(3)
11.10 Filaments/Prominences: Eruptions
448(2)
References
450(13)
12 Flares: Nonthermal Particles
463(40)
12.1 Flare Gamma-Rays
463(2)
12.2 Flare Hard X-Ray Ribbons
465(3)
12.3 Coronal Hard X-Rays
468(3)
12.4 Modeling of Hard X-ray Spectra
471(3)
12.5 Rapid Magnetic Changes During Flares
474(4)
12.6 Magnetic Reconnection and Particle Acceleration
478(2)
12.7 Microflares and Nanoflares
480(3)
12.8 Flare Hard X-Ray Oscillations
483(3)
12.9 Flare Radio Emission
486(3)
12.10 White-Light Flares
489(3)
References
492(11)
13 Flares: Thermal Emission
503(40)
13.1 Direct Heating of Chromosphere
503(3)
13.2 Chromospheric Evaporation
506(2)
13.3 Coronal Condensation and Rain
508(2)
13.4 Flare Oscillations and Waves
510(3)
13.5 High-Temperature Components
513(3)
13.6 Flare Size Distributions and SOC Systems
516(3)
13.7 Flare Energy Partition
519(2)
13.8 Magnetic Topology in Flares
521(3)
13.9 MHD Modeling of Flares
524(3)
13.10 Stellar Flares
527(2)
References
529(14)
14 CME Initiation
543(42)
14.1 CME Observables, Catalogs, and Classifications
543(2)
14.2 CME Energetics
545(4)
14.3 CME Helicity
549(3)
14.4 CME Magnetic Configuration
552(3)
14.5 CME Trigger Mechanisms
555(2)
14.6 MHD Evolution of CME
557(4)
14.7 Confined Eruption
561(3)
14.8 Coronal Dimming
564(3)
14.9 HaloCMEs
567(3)
14.10 CMEs and Coronal Radio Emission
570(3)
References
573(12)
15 CME Propagation
585(40)
15.1 CME Coronagraph Observations
585(2)
15.2 CME Stereoscopy and Tomography
587(3)
15.3 CME Acceleration
590(3)
15.4 CME Interplanetary Propagation
593(3)
15.5 Aerodynamic Drag Force
596(3)
15.6 CME-CME Interactions
599(3)
15.7 CME-Driven Global Waves
602(3)
15.8 CME-Driven Shocks
605(2)
15.9 CMEs and Interplanetary Radio Emission
607(4)
15.10 MHD Simulations of CME Propagation
611(3)
References
614(11)
16 Sun-Earth Connections
625(38)
16.1 The Slow Solar Wind
625(2)
16.2 The Fast Solar Wind
627(3)
16.3 Solar Wind Models
630(2)
16.4 Heliospheric Magnetic Structures
632(3)
16.5 Impulsive SEP Events
635(3)
16.6 Gradual SEP Events
638(2)
16.7 Geomagnetic Storms
640(3)
16.8 Solar Flare Predictions
643(3)
16.9 Space Weather Forecasting
646(3)
16.10 Solar Irradiance
649(2)
References
651(12)
Appendix A Reviews (2000-2018) 663(10)
Appendix B Journal Abbreviations 673(2)
Appendix C Acronyms 675(12)
Index 687
Markus J. Aschwanden is an astrophysicist at Lockheed-Martin, Advanced Technology Center, Solar and Astrophysics Laboratory, and has been a science team member and co-investigator of several leading international solar missions. He has received NASA awards over 30 years and is author of several books, including "Physics of the Solar Corona" and "Self-Organized Criticality in Astrophysics" co-published by Springer and Praxis.