Atjaunināt sīkdatņu piekrišanu

E-grāmata: New Topics in Simulation and Modeling of RF Circuits

Citas grāmatas par šo tēmu:
  • Formāts - PDF+DRM
  • Cena: 85,16 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
Citas grāmatas par šo tēmu:

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

New Topics in Simulation and Modeling of RF Circuits addresses two main topics: simulation of RF circuits and new models of nonlinear power BAW resonators and filters.

Since RF circuits have several unique features, and all analysis methods are based on the circuit essential properties, the book begins by describing the properties of RF circuits, characterization of circuits with customary and uncustomary behavior and some theorems of solutions existence and uniqueness for dynamic nonlinear circuits.

Thereafter, the main time domain and frequency domain analysis methods for RF circuits are presented. The advantages and disadvantages of each method have been highlighted, and an algorithm for the time step choice in transient analysis based on energy balance errors is also presented.

Lastly, the final part contains some nonlinear circuit models of power BAW resonators. The behavioral models for the time domain analysis are simple circuits containing weakly nonlinear elements. The behavioral models for frequency domain analysis are based on the measured values of the frequency dependent S parameters for a set of incident powers. S parameters corresponding to certain intermodulation products of practical interest are also considered. The physical models contain artificial transmission lines with nonlinear circuit elements corresponding to mechanical and electrical nonlinearities.
Preface ix
List of Figures
xi
List of Tables
xix
List of Abbreviations
xxi
1 Introduction
1(16)
1.1 RF Circuits
1(3)
1.2 Customary and Uncustomary Behavior of Non-Autonomous Circuits
4(5)
1.2.1 Definitions and Properties
4(2)
1.2.2 Customary and Uncustomary Behavior of Linear and Nonlinear Circuits
6(2)
1.2.3 Operating Modes
8(1)
1.3 Existence and Uniqueness of Dynamic Circuit Solutions
9(8)
References
16(1)
2 Analysis of RF Circuits
17(118)
2.1 Time Domain Analysis
17(88)
2.1.1 Transient Analysis
17(1)
2.1.1.1 Time step choice algorithm of SPICE and SPECTRE RF
17(3)
2.1.1.2 Brambilla--D'Amore time step choice algorithm
20(1)
2.1.1.2.1 Computation of energy errors
20(1)
2.1.1.2.2 Time step computation
21(2)
2.1.1.2.3 Case studies
23(6)
2.1.1.3 Time step choice algorithm based on energy balance relative error
29(1)
2.1.1.3.1 Errors used in transient analysis
29(3)
2.1.1.3.2 Time step choice algorithm
32(1)
2.1.1.3.3 Solving the linear circuit with companion models
33(3)
2.1.1.3.4 Examples
36(17)
2.1.1.3.5 Conclusions
53(1)
2.1.1.4 Frequency warping in linear circuits
54(1)
2.1.1.4.1 Parallel RLC autonomous circuit
55(1)
2.1.1.4.2 High quality factor circuit
56(1)
2.1.1.4.3 Linear band-pass BAW filter
57(2)
2.1.2 Envelope Following and the Analysis with Two Time Variables
59(1)
2.1.2.1 Kundert algorithm implemented in SPECTRE RF
60(2)
2.1.2.2 Brambilla-Maffezzoni algorithm implemented in PAN
62(3)
2.1.2.3 Examples
65(1)
2.1.2.3.1 AM demodulator
65(2)
2.1.2.3.2 In-Phase and quadrature modulator (IQ)
67(5)
2.1.2.3.3 Remark
72(5)
2.1.2.4 Exponential approximation of the envelope
77(2)
2.1.2.5 Quadratic approximation of the envelope
79(1)
2.1.2.5.1 Switching between exponential and quadratic envelope approximations
80(1)
2.1.2.6 Examples
81(4)
2.1.2.7 Envelope following analysis of a buck converter with closed loop control
85(1)
2.1.2.7.1 Example
85(5)
2.1.2.8 Transient analysis with two time variables
90(2)
2.1.2.8.1 Remarks
92(1)
2.1.3 Computation of the Periodic Steady State
92(1)
2.1.3.1 The brute force method with the periodicity error control
92(1)
2.1.3.2 Shooting methods
93(1)
2.1.3.2.1 Shooting with Newton-Raphson
93(3)
2.1.3.2.2 Shooting analysis from PAN
96(1)
2.1.3.3 Shooting with linear extrapolation
97(1)
2.1.3.4 Shooting with exponential extrapolation
98(1)
2.1.3.4.1 Example
99(1)
2.1.3.5 Two time variables method
100(1)
2.1.3.5.1 Finite difference method
100(2)
2.1.3.5.2 Shooting with Newton-Raphson
102(1)
2.1.3.6 Shooting with exponential extrapolation
102(2)
2.1.3.6.1 Example
104(1)
2.2 Frequency Domain Analysis
105(30)
2.2.1 Harmonic Balance Method
105(1)
2.2.1.1 Valtonen harmonic balance method implemented in APLAC
105(1)
2.2.1.1.1 Time domain and frequency domain representations of a periodic signal
105(1)
2.2.1.1.2 Harmonic balance analysis
106(2)
2.2.1.1.3 Remarks
108(1)
2.2.1.1.4 Example
108(2)
2.2.1.2 Mixed frequency -- time domain analysis method implemented in SPECTRE RF
110(4)
2.2.1.2.1 Example
114(1)
2.2.2 Source Iteration Method for Circuits with Resistive Nonlinearities
115(1)
2.2.2.1 Equivalent sources
116(1)
2.2.2.2 Periodic solutions of the linear circuit
117(1)
2.2.2.3 Fourier analysis
118(1)
2.2.2.4 Iterative procedure
118(1)
2.2.2.5 Remarks
119(1)
2.2.2.6 Harmonics selection
119(1)
2.2.2.7 Example
120(3)
2.2.3 Circuit Envelope Method
123(5)
2.2.3.1 Example
128(2)
References
130(5)
3 Nonlinear Circuit Models for Power Bulk Acoustic Wave Resonators and Filters
135(46)
3.1 Bulk Acoustic Wave Resonators -- Structure and Nonlinear Behavior
135(5)
3.2 Linear Parametric Circuit Models
140(7)
3.2.1 Nosek and Albareda Models
140(3)
3.2.2 Identification of the Nosek Model Parameters
143(3)
3.2.3 Discussion on Linear Parametric Circuit Models
146(1)
3.3 Nonlinear Circuit Models
147(15)
3.3.1 Behavioral Circuit Models
147(9)
3.3.2 Parameter Identification for a Behavioral Resonator Model
156(1)
3.3.3 Nonlinear Circuit Model for Anti-Series and Anti-Parallel Connections
157(3)
3.3.4 Example
160(2)
3.4 Physical Model Using Transmission Lines
162(8)
3.4.1 1D Linear Artificial Transmission Line Model
164(2)
3.4.2 1D Artificial Transmission Line Model With Mechanical Nonlinearity
166(1)
3.4.3 Example
167(3)
3.5 Behavioral Models for Frequency Domain Analysis of Power BAW Filters Driven by Multi-Tone Excitations
170(5)
3.5.1 Compensation of Connection Wires Influence
170(3)
3.5.2 Example
173(2)
3.6 Conclusions
175(6)
References
177(4)
Index 181(6)
About the Authors 187
Alexandru Gabriel Gheorghe, Florin Constantinescu