Atjaunināt sīkdatņu piekrišanu

E-grāmata: Non-Archimedean Analysis: Quantum Paradoxes, Dynamical Systems and Biological Models

  • Formāts - PDF+DRM
  • Cena: 106,47 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

N atur non facit saltus? This book is devoted to the fundamental problem which arises contin­ uously in the process of the human investigation of reality: the role of a mathematical apparatus in a description of reality. We pay our main attention to the role of number systems which are used, or may be used, in this process. We shall show that the picture of reality based on the standard (since the works of Galileo and Newton) methods of real analysis is not the unique possible way of presenting reality in a human brain. There exist other pictures of reality where other num­ ber fields are used as basic elements of a mathematical description. In this book we try to build a p-adic picture of reality based on the fields of p-adic numbers Qp and corresponding analysis (a particular case of so called non-Archimedean analysis). However, this book must not be considered as only a book on p-adic analysis and its applications. We study a much more extended range of problems. Our philosophical and physical ideas can be realized in other mathematical frameworks which are not obliged to be based on p-adic analysis. We shall show that many problems of the description of reality with the aid of real numbers are induced by unlimited applications of the so called Archimedean axiom.

Papildus informācija

Springer Book Archives
I. Measurements and Numbers.-
1. Mathematics and Reality.-
2.
Measurements and Natural Numbers.-
3. Measurements and Rational Numbers.-
4.
Real Numbers: Infinite Exactness of Measurements.-
5. On the Boundary of the
Real Continuum.-
6. Finite Exactness and m-adic Numbers.-
7. Rings of m-adic
Numbers.-
8. Ultrametric Spaces.-
9. Ultrametric Social Space.-
10. Non-Real
Models of Space.- II. Fundamentals.-
1. Einstein-Podolsky-Rosen Paradox.-
2.
Foundations of Quantum Mechanics.-
3. Foundations of Probability Theory.-
4.
Statistical Interpretation of Quantum mechanics.-
5. Quantum Probabilities;
Two Slit Experiment.-
6. Bells Inequality and the Death of Reality.-
7.
Individual Realists Interpretation and Hidden Variables.-
8. Orthodox
Copenhagen Interpretation.-
9. Einstein-Podolsky-Rosen Paradox and
Interpretations of Quantum Mechanics.- III. Non-Archimedean Analysis.-
1.
Exponential Function.-
2. Normed and Locally Convex Spaces.-
3. Locally
Constant Functions.-
4. Kaplanskys Theorem.-
5. Differentiate Functions.-
6.
Analytic Functions.-
7. Complex Non-Archimedean Numbers.-
8. Mahler Basis.-
9. Measures on the Ring of p-adic Integers.-
10. Volkenborn Integral (Uniform
Distribution).-
11. The Monna-Springer Integration Theory.- IV. The
Ultrametric Hilbert Space Description of Quantum Measurements with a Finite
Exactness.-
1. Critique of Interpretations of Quantum Mechanics.-
2.
Preparation Procedures and State Spaces.-
3. Ultrametric (m-adic) Hilbert
Space.-
4. m-adic (Ultrametric) Axiomatic of Quantum Measurements.-
5.
Heisenberg Uncertainty and Inexactness Relations.-
6. Energy Representation
for the Harmonic Oscillator.-
7. Einstein-Podolsky-Rosen Paradox and Infinite
Exactness of Measurements.-
8. Fuzzy Reality.-
9. Quantum-Classical
Heisenberg InexactnessRelation for the Harmonic Oscillator and Free
Particle.- V. Non-Kolmogorov Probability Theory.-
1. Frequency Probability
Theory.-
2. Measure and Probability.-
3. Densities.-
4. Integration
Technique.-
5. Non-Kolmogorov Axiomatics.-
6. Products of Probabilities.-
7.
Proportional and Classical Definitions of Probability.-
8. p-adic Asymptotic
of Bernoulli Probabilities.-
9. More Complicated p-adic Asymptotics.-
10.
p-adic Bernoulli Theorem.-
11. Non-symmetrical Bernoulli Distributions.-
12.
The Central Limit Theorem.- VI. Non-Kolmogorov Probability and Quantum
Physics.-
1. Dirac, Feynman, Wigner and Negative Probabilities.-
2. p-adic
Stochastic Point of View of Bells Inequality.-
3. An Example of p-adic
Negative Probability Behaviour.-
4. p-adic Stochastic Hidden Variable Model
with Violations of Bells Inequality.-
5. Quadri Variate Joint Probability
Distribution.-
6. Non-Kolmogorov Statistical Theory.-
7. Physical
Interpretation of Negative Probabilities in Prugoveckis Empirical Theory of
Measurement.-
8. Experiments to Find p-adic Stochastics in the Two Slit
Experiment.- VII. Position and Momentum Representations.-
1. Groups of
Unitary Isometric Operators in a p-adic Hilbert Space.-
2. p-adic Valued
Gaussian Integration and Spaces of Square Integrable Functions.-
3. A
Representation of the Translation Group.-
4. Gaussian Representations for the
Position and Momentum Operators.-
5. Unitary Isometric One Parameter Groups
Corresponding to the Position and Momentum Operators.-
6. Operator Calculus.-
7. Exactness of a Measurement of Positions and Momenta.-
8. Spectrum of
p-adic Position Operator.-
9. L2-space with respect to p-adic Lebesgue
distributions.-
10. Fourier Transform of L2-maps and Momentum
Representation.-
11. Schrödinger Equation.- VIII. p-adicDynamical Systems
with Applications to Biology and Social Sciences.-
1. Roots of Unity.-
2.
Dynamical Systems in Non-Archimedean Fields.-
3. Dynamical Systems in the
Field of Complex p-adic Numbers.-
4. Dynamical Systems in the Fields of
p-adic Numbers.-
5. Computer Calculations for Fuzzy Cycles.-
6. The Human
Subconscious as a p-adic Dynamical System.-
7. Ultrametric on the
Genealogical Tree.-
8. Social Dynamics.-
9. Human History as a p-adic
Dynamical System.-
10. God as p-adic Dynamical System.-
11. Struggle of
Civilizations.-
12. Economical and Social Effectiveness.- Open Problems.-
1.
Newtons Method (Hensel Lemma).-
2. Non-Real Reality.-
5. Quantum Mechanics
of Vladimirov and Volovich.