Atjaunināt sīkdatņu piekrišanu

E-grāmata: Non-Imaging Microwave and Millimetre-Wave Sensors for Concealed Object Detection

(Ariel University, Israel), (Waterlooville, UK),
  • Formāts: 232 pages
  • Izdošanas datums: 19-Dec-2017
  • Izdevniecība: CRC Press Inc
  • Valoda: eng
  • ISBN-13: 9781351831826
  • Formāts - EPUB+DRM
  • Cena: 100,17 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: 232 pages
  • Izdošanas datums: 19-Dec-2017
  • Izdevniecība: CRC Press Inc
  • Valoda: eng
  • ISBN-13: 9781351831826

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

"Technology now allows the use of microwave and millimeter wave sensors for the detection of concealed objects, typically weapons and explosive devices, on the human body. This book discusses these developments and includes examples of actual devices built and tested by the authors. Topics include active millimeter wave sensor using the direct detection approach and the heterodyne approach, active microwave sensor for CNR-based object detection, passive millimeter wave sensors, and the role of shielding effects in operating non-imaging MM-wave sensors"--

During the last decade, Kapilevich, Harmer, and Bowring have been involved in designing and testing various microwave and millimeter-wave devices and systems to improve the efficiency of detecting weapons and explosives carried by human bodies. They share their findings regarding non-imaging sensors applied to the remote detection of both metallic and dielectric objects concealed on a human body in outdoor and indoor environments. Their topics include active millimeter-wave sensors using a direct detection approach, frequency-modulated continuous wave sensors for detecting hidden objects, and the role of shielding effects in operating non-imaging sensors. Annotation ©2015 Ringgold, Inc., Portland, OR (protoview.com)

In response to the ever-increasing global threat of terrorist attacks, the personal screening industry has been growing at a rapid rate. Many methods have been developed for detecting concealed weapons and explosives on the human body. In this important new book, the authors discuss their experiences over the last decade designing and testing microwave and millimetre wave detection and screening systems. It includes examples of actual devices that they have built and tested, along with test results that were obtained in realistic scenarios.

The book focuses on the development of non-imaging detection systems, which are similar to radar. These systems do not form a conventional image of the scene and the person(s) being screened. Instead, the sensors detect and analyze the effect that the body, and any concealed objects, has on a transmitted waveform. These systems allow remote detection of both metallic and dielectric devices concealed on the human body in both indoor and outdoor environments.

The book discusses a number of sensor types, including active millimetre wave sensors using the direct detection and the heterodyne approach, active microwave sensors for CNR-based object detection, passive millimetre wave sensors, and the role of shielding effects in operating non-imaging MM-wave sensors.

The goal of this book is to systemize the test results obtained by the authors, helping specialists to develop improved screening systems in the future. Another goal is to show how the use of non-imaging systems can reduce the cost of the screening process.

Recenzijas

"... focuses on an aspect that is ... usually not a search area for remote sensing researchers, but is a field interesting to know. ... deals with a synthesis of research in the detection of metallic and dielectric objects (without electrical conduction)." Jean-Marie Dubois, Professor Emeritus, University of Sherbrooke, Québec, Canada, from Bulletin d'AQT

Preface vii
Acknowledgements xi
About the Authors xiii
1 Introduction
1(8)
References
7(2)
2 Background and Theory
9(14)
2.1 RCS Concept and Basic Definitions
9(4)
2.2 Active versus Passive Modes of Operation Sensors
13(3)
2.3 Millimetre-Wave Emission from a Planar Surface
16(5)
2.4 Conclusion
21(2)
References
21(2)
3 Active Millimetre-Wave Sensor Using Direct Detection Approach
23(40)
3.1 Direct Detection Radar Principles and Theory
23(10)
3.2 Polarimetric Signatures
33(3)
3.3 MiRTLE Introduction
36(8)
3.3.1 MiRTLE Sensor Design
39(5)
3.4 Radar Signal Classification Techniques and Results
44(8)
3.5 Handheld Version of Sensor
52(7)
3.6 Conclusion
59(4)
References
60(3)
4 FMCW Sensors for Detecting Hidden Objects
63(40)
4.1 Linear FMCW Theory
63(3)
4.2 Basic Hardware Configurations
66(5)
4.2.1 FMCW Sensors with a Single Antenna
66(3)
4.2.2 FMCW Sensors with Separated Antennae
69(2)
4.3 W-Band Millimetre-Wave Sensors
71(13)
4.3.1 Estimating System Performance
72(2)
4.3.2 Data Acquisition and Signal Processing
74(2)
4.3.3 Range Experiments
76(1)
4.3.4 Target Identification
77(7)
4.4 Submillimetre-Wave Sensor at 330 GHz
84(14)
4.4.1 Schematic of the Sensor
85(1)
4.4.2 System Characteristics and Performance
86(1)
4.4.2.1 Components Parameters at 330 GHZ
86(1)
4.4.2.2 Performance Estimation
87(1)
4.4.3 Remote Detection Experiments
87(1)
4.4.4 Improving Sensitivity and Resolution
88(10)
4.5 Conclusion
98(5)
References
100(3)
5 Active Microwave Sensors for Complex Natural Resonance-Based Object Detection
103(26)
5.1 Introduction and Theory
103(3)
5.2 Simulations with Electromagnetic Solver Software
106(8)
5.3 Experimental Configuration, Signal Processing and Results
114(10)
5.4 Conclusion
124(5)
References
124(5)
6 Passive Millimetre-Wave Sensors
129(38)
6.1 General Considerations
129(4)
6.2 Superheterodyne Receivers of Passive Sensors
133(7)
6.3 Direct Detection Receivers as Passive Sensors
140(11)
6.4 Sensors Based on Correlation Receivers
151(1)
6.5 Sensors Based on Interference Effects
152(8)
6.6 Modelling Results
160(3)
6.7 Conclusion
163(4)
References
163(4)
7 The Role of Shielding Effects in Operating Non-Imaging Sensors
167(36)
7.1 Basic Shielding Mechanisms
167(2)
7.2 Theoretical Models and Estimation Method
169(3)
7.2.1 Basic Existing Models
169(2)
7.2.2 Estimation Method Employed
171(1)
7.3 Well/Ill-Conditioning Analysis
172(2)
7.4 Experimental Setup and Results of Measurements: Coherent Illumination
174(13)
7.5 Sensitivity and Error Analysis
187(1)
7.6 Characterization of Materials: Incoherent Illumination
188(11)
7.6.1 Introductory Notes
188(1)
7.6.2 Modelling Interference in the Presence of Noise
189(3)
7.6.3 Experimental Verification of the Noise Averaging Effect
192(7)
7.7 Conclusion
199(4)
References
200(3)
Index 203
Boris Y. Kapilevich, Ariel University, MM-wave Laboratory, Israel

Stuart W. Harmer, Manchester Metropolitan University, School of Electrical Eng., UK

Nicholas J. Bowring, Manchester Metropolitan University, School of Electrical Eng., UK