Atjaunināt sīkdatņu piekrišanu

Non-Invasive Instrumentation and Measurement in Medical Diagnosis 2nd edition [Hardback]

(University of Connecticut, Storrs, USA)
  • Formāts: Hardback, 526 pages, height x width: 254x178 mm, weight: 1122 g, 22 Tables, black and white; 60 Illustrations, color; 190 Illustrations, black and white
  • Sērija : Biomedical Engineering
  • Izdošanas datums: 24-Oct-2017
  • Izdevniecība: CRC Press Inc
  • ISBN-10: 1498749909
  • ISBN-13: 9781498749909
Citas grāmatas par šo tēmu:
  • Hardback
  • Cena: 184,76 €
  • Grāmatu piegādes laiks ir 3-4 nedēļas, ja grāmata ir uz vietas izdevniecības noliktavā. Ja izdevējam nepieciešams publicēt jaunu tirāžu, grāmatas piegāde var aizkavēties.
  • Daudzums:
  • Ielikt grozā
  • Piegādes laiks - 4-6 nedēļas
  • Pievienot vēlmju sarakstam
  • Formāts: Hardback, 526 pages, height x width: 254x178 mm, weight: 1122 g, 22 Tables, black and white; 60 Illustrations, color; 190 Illustrations, black and white
  • Sērija : Biomedical Engineering
  • Izdošanas datums: 24-Oct-2017
  • Izdevniecība: CRC Press Inc
  • ISBN-10: 1498749909
  • ISBN-13: 9781498749909
Citas grāmatas par šo tēmu:
Non-Invasive Instrumentation and Measurement in Medical Diagnosis, Second Edition discusses NIMD as a rapidly growing, interdisciplinary field. The contents within this second edition text is derived from Professor Robert B. Northrops experience teaching for over 35 years in the Biomedical Engineering Department at the University of Connecticut. The text focusses on the instruments and procedures which are used for non-invasive medical diagnosis and therapy, highlighting why NIMD is the preferred procedure, whenever possible, to avoid the risks and expenses associated with surgically opening the body surface. This second edition also covers a wide spectrum of NIMD topics including: x-ray bone densitometry by the DEXA method; tissue fluorescence spectroscopy; optical interferometric measurement of nanometer tissue displacements; laser Doppler velocimetry; pulse oximetry; and applications of Raman spectroscopy in detecting cancer, to name a few. This book is intended for use in an introductory classroom course on Non-Invasive Medical Instrumentation and Measurements taken by juniors, seniors, and graduate students in Biomedical Engineering. It will also serve as a reference book for medical students and other health professionals intrigued by the topic. Practicing physicians, nurses, physicists, and biophysicists interested in learning state of the art techniques in this critical field will also find this text valuable. Non-Invasive Instrumentation and Measurement in Medical Diagnosis, Second Edition concludes with an expansive index, bibliography, as well as a comprehensive glossary for future reference and reading.

Recenzijas

"Non-invasive medical diagnosis is already an important area in medicine and healthcare and it will be much more important in the future. This book is an excellent overview, very suitable for introductory courses where the objective is to provide the students with a complete tour over the instrumentation and techniques for non-invasive diagnosis currently available." António Miguel Morgado, University of Coimbra, Portugal





"The description of the text is powerful and scientific and yet written in a simple and easy to understand language conveying the meaning to the reader without any ambiguity. The book is a comprehensive treatise and covers the syllabi of the courses of non-invasive instrumentation approaches in the subject of Biomedical Instrumentation being taught at various levels, both the undergraduates and graduates, across many universities across the globe. An important landmark feature of the book is that the author has included the NMID techniques of the future which are at prototype stages, not yet commercialized and awaiting final approval by the Govt agencies. Overall, the book richly reflects the extensive teaching and research experience of the author in the subject area of the book." Vinay Sharma, Banasthali University, India





"The main objective of this book is to provide a brief introduction to the fields of non-invasive bio-instrumental systems, monitoring systems, applications, and implementation. To achieve these objectives, theoretical advances, concepts and its applications to real-life problems will be stressed. The book is structured so that the readers will find relevance as a textbook for undergraduate and graduate students taking courses in the introduction of Bio-instrumentation and special areas in Biomedical Engineering and health care system. It is expected that this book will provide a launching pad for future researchers." A K M Arifuzzman, Georgia Institute of Technolog

Preface xvii
About the Author xxi
Acronyms and Abbreviations xxiii
1 Introduction to Noninvasive Medical Measurements 1(4)
1.1 Definitions of Noninvasive, Minimally Invasive, and Invasive Medical Measurements
1(1)
1.2 Modalities of NI Instrumentation
2(2)
1.3
Chapter Summary
4(1)
2 Visual Inspection of Tissues with Certain Endoscopes and Other Optical Devices 5(16)
2.1 Introduction
5(1)
2.2 Ophthalmoscopes, Slit Lamps, and Otoscopes
5(4)
2.2.1 Ophthalmoscopes
5(3)
2.2.2 Slit Lamps
8(1)
2.2.3 Otoscopes
8(1)
2.3 Endoscopes
9(5)
2.4 CCD and CMOS Active Pixel Image Sensors
14(3)
2.4.1 CCD Image Sensors
14(2)
2.4.2 CMOS Active Pixel Image Sensors
16(1)
2.5 NI Diagnosis of Skin Lesions
17(2)
2.5.1 Introduction
17(1)
2.5.2 Malignant Melanoma
17(2)
2.5.3 Discussion
19(1)
2.6
Chapter Summary
19(2)
3 Noninvasive Diagnosis Using Sounds Originating from within the Body 21(22)
3.1 Introduction
21(7)
3.1.1 Background
21(1)
3.1.2 Stethoscopes
21(2)
3.1.3 Microphones
23(2)
3.1.4 Acoustic Coupling
25(1)
3.1.5 Discussion
26(2)
3.2 Means of Analysis for Acoustic Signals
28(5)
3.2.1 Introduction
28(1)
3.2.2 Discrete Fourier Transform and the Power Density Spectrum
28(3)
3.2.3 Time-Frequency Analysis for Transient Sounds
31(2)
3.2.4 Discussion
33(1)
3.3 Heart Sounds
33(5)
3.3.1 Introduction
33(2)
3.3.2 Abnormal Heart Sounds
35(3)
3.3.3 Discussion
38(1)
3.4 Breath Sounds
38(2)
3.4.1 Introduction
38(1)
3.4.2 Abnormal Breath Sounds
38(1)
3.4.3 Discussion
39(1)
3.5 Otoacoustic Emissions
40(1)
3.5.1 Introduction
40(1)
3.5.2 Otoacoustic Testing
40(1)
3.5.3 Discussion
41(1)
3.6
Chapter Summary
41(2)
4 Measurement of Electrical Potentials and Magnetic Fields from the Body Surface 43(72)
4.1 Introduction
43(1)
4.2 Electrodes
43(5)
4.2.1 Introduction
43(1)
4.2.2 Electrode Half-Cell Potential
44(1)
4.2.3 Equivalent Circuits for AgC1 Skin Electrodes
45(1)
4.2.4 Dry Electrodes
46(2)
4.2.5 Invasive Electrodes
48(1)
4.3 Biopotential Amplifiers
48(21)
4.3.1 Introduction
48(1)
4.3.2 Single-Ended Input Amplifiers
48(1)
4.3.3 Differential Amplifiers
49(4)
4.3.4 Op-amps Used for Signal Conditioning
53(2)
4.3.5 Noise and Low-Noise Amplifiers
55(8)
4.3.6 Medical Isolation Amplifiers
63(4)
4.3.7 Driven-Leg ECG Amplifiers
67(2)
4.3.8 Discussion
69(1)
4.4 ECG
69(9)
4.4.1 Introduction
69(1)
4.4.2 Electrode Placements
70(5)
4.4.3 Vector Cardiography
75(1)
4.4.4 ECG Analysis, Feature Extraction, and Diagnosis
76(1)
4.4.5 Discussion
77(1)
4.5 EMG
78(6)
4.5.1 Introduction
78(1)
4.5.2 Origin of EMGs
79(2)
4.5.3 EMG Amplifiers
81(1)
4.5.4 What EMGs Can Tell Us
82(2)
4.5.5 Discussion
84(1)
4.6 Electroencephalogram
84(10)
4.6.1 Introduction
84(1)
4.6.2 Sources and Classification of the EEG
84(1)
4.6.3 EEG Recording Systems
85(2)
4.6.4 2-D Spatial Sampling of Scalp EEG Potentials by Electrode Arrays
87(4)
4.6.5 EEG Amplifiers, Interfaces, and Signal Processing
91(1)
4.6.6 Event-Related Potentials and Signal Averaging
92(2)
4.6.7 Discussion
94(1)
4.7 Other Body Surface Potentials
94(8)
4.7.1 Introduction
94(1)
4.7.2 EOG
95(1)
4.7.3 Electroretinogram
95(4)
4.7.4 Electrocochleogram
99(1)
4.7.5 Discussion
100(2)
4.8 Magnetoelectric Measurements
102(10)
4.8.1 Introduction: SQUID and SQUID Arrays
102(2)
4.8.2 Magnetoencephalogram
104(4)
4.8.3 Magnetocardiography Using SQUIDS
108(1)
4.8.4 Other Magnetoelectric Measurements
109(1)
4.8.5 Optical Atomic Magnetometers
109(2)
4.8.6 Discussion
111(1)
4.9
Chapter Summary
112(3)
5 Noninvasive Measurements of Blood Pressure 115(4)
5.1 Introduction
115(1)
5.2 Cuff Sphygmomanometer
115(2)
5.3 Other-Means of Noninvasively Estimating BP
117(1)
5.4
Chapter Summary
117(2)
6 Body Temperature Measurements 119(12)
6.1 Introduction
119(1)
6.2 Conductive Heat Transfer and Thermometer Response Time
120(1)
6.3 LIR BB Thermometer
121(8)
6.3.1 Introduction
121(1)
6.3.2 Physics of BB Radiation
122(2)
6.3.3 Temperature Measurement with PYMs
124(3)
6.3.4 ThermoScan LIR Thermometers
127(2)
6.3.5 Discussion
129(1)
6.4
Chapter Summary
129(2)
7 Noninvasive Blood Gas Sensing with Electrodes 131(8)
7.1 Introduction
131(1)
7.2 Transcutaneous O2 Sensing
131(2)
7.2.1 Introduction: The Clark Electrode
131(2)
7.2.2 Transcutaneous [ O2] (tcpO2) Sensor
133(1)
7.3 Transcutaneous CO2 Sensing
133(2)
7.3.1 Introduction: The Stow-Severinghaus Electrode
133(2)
7.3.2 Transcutaneous tcpCO2 Sensing
135(1)
7.4
Chapter Summary
135(4)
8 Tests on Naturally Voided Body Fluids 139(44)
8.1 Introduction
139(1)
8.2 Instrumental Methods
139(34)
8.2.1 Introduction
139(1)
8.2.2 Dispersive Spectrophotometry
139(8)
8.2.3 Nondispersive Spectroscopy
147(5)
8.2.4 Chemical Analysis by SPR
152(6)
8.2.5 Ion-Selective Electrodes
158(2)
8.2.6 Flame Photometry
160(4)
8.2.7 Gas Chromatography
164(4)
8.2.8 Mass Spectrometry
168(5)
8.3 What Can Be Learned from Urine?
173(4)
8.3.1 Introduction
173(4)
8.3.2 Diagnosis of Early-Stage Pancreatic Cancer from Proteins in the Urine
177(1)
8.4 What Can Be Learned from Feces?
177(2)
8.5 What Can Be Learned from Saliva?
179(1)
8.6 What Can Be Learned from Breath?
180(2)
8.7
Chapter Summary
182(1)
9 Plethysmography 183(8)
9.1 Introduction
183(1)
9.2 Volume Displacement Plethysmography
183(1)
9.3 Impedance Plethysmography
183(7)
9.3.1 Introduction
183(1)
9.3.2 Self-Balancing, Impedance Plethysmographs
184(5)
9.3.3 Applications of Impedance Plethysmography
189(1)
9.3.4 Discussion
190(1)
9.4 Photo-Plethysmography
190(1)
9.5
Chapter Summary
190(1)
10 Pulmonary Function Tests 191(10)
10.1 Introduction
191(1)
10.2 Spirometers and Related Equipment
192(3)
10.3 Tests with Spirometers
195(3)
10.4 Diffusing Capacity of the Lungs for Carbon Monoxide
198(1)
10.5
Chapter Summary
199(2)
11 Measurement of Basal Metabolism 201(4)
11.1 Introduction
201(1)
11.2 BMR Test Procedure
202(1)
11.3
Chapter Summary
203(2)
12 Ocular Tonometry 205(6)
12.1 Introduction
205(1)
12.2 Noncontact, Air-Puff Applanation Tonometer
206(3)
12.3 Contact Tonometers
209(1)
12.4
Chapter Summary
210(1)
13 Noninvasive Tests Involving the Input of Audible Sound Energy 211(16)
13.1 Introduction
211(2)
13.2 Acoustic Impedance Measurement of the Respiratory System
213(3)
13.3 Acoustic Impedance Measurement of the Eardrum (Tympanometry)
216(5)
13.4 Transthoracic Acoustic Transfer Function as a Possible Measure of Lung Condition
221(4)
13.4.1 Introduction
221(2)
13.4.2 Transthoracic Propagation of Broadband Acoustic Noise to Evaluate Pulmonary Health
223(1)
13.4.3 Use of White Noise Sound Introduced into the Oral Airway to Assess Lung Condition
224(1)
13.4.4 Discussion
225(1)
13.5
Chapter Summary
225(2)
14 Noninvasive Tests Using Ultrasound (Excluding Imaging) 227(28)
14.1 Introduction
227(1)
14.2 Doppler Effect
227(1)
14.3 Doppler Ultrasound for Blood and Tissue Velocity Measurements
228(10)
14.3.1 Angle-Dependent, CW, Blood Velocity Magnitude Measurement
228(2)
14.3.2 Directional, CW Doppler System
230(3)
14.3.3 Angle-Independent, CW Doppler Velocimetry
233(1)
14.3.4 Pulsed Doppler Systems
234(4)
14.3.5 Discussion
238(1)
14.4 NOTOPM System
238(8)
14.4.1 Introduction
238(2)
14.4.2 Closed-Loop, Constant-Phase, No Touch Means of Measurement of OP
240(5)
14.4.3 Discussion
245(1)
14.5 Closed-Loop, Type 1, Constant-Phase Difference Ranging System
246(5)
14.5.1 Introduction
246(1)
14.5.2 Analysis of a Linear NOTOPM System Using a VPC
247(3)
14.5.3 Other Applications of the CPDRS Architecture Using Ultrasound
250(1)
14.5.4 Discussion
250(1)
14.6 Measurement of Tissue Glucose Concentration By Closed-Loop, Constant-Phase, CW Ultrasound: A Prototype System
251(3)
14.6.1 Introduction
251(1)
14.6.2 Approximate Model of How c Varies with Density, p
251(1)
14.6.3 Phase Lag between the Transmitted and Received CW Ultrasound Waves
252(1)
14.6.4 System Block Diagram for the Constant-Phase Glucose Sensor System
252(2)
14.6.5 Discussion
254(1)
14.7
Chapter Summary
254(1)
15 Noninvasive Applications of Photon Radiation (Excluding Imaging) 255(54)
15.1 Introduction
255(1)
15.2 Bone Densitometry
256(3)
15.2.1 Introduction
256(1)
15.2.2 DXA Method
256(3)
15.2.3 Discussion
259(1)
15.3 NI Diagnosis By Tissue Fluorescence
259(4)
15.3.1 Introduction
259(1)
15.3.2 Properties of Fluorescent Molecules
260(1)
15.3.3 Fluorescence in NI Cancer Diagnosis
260(3)
15.3.4 Discussion
263(1)
15.4 Optical Interferometric Measurement of Nanometer Displacements of Biological Surfaces
263(6)
15.4.1 Introduction
263(2)
15.4.2 Measurement of Tympanal Membrane Displacement By Fizeau Interferometer
265(1)
15.4.3 Measurement of Skin Vibration By Optical Interferometry
266(3)
15.4.4 Discussion
269(1)
15.5 Laser Doppler Velocimetry
269(8)
15.5.1 Principles of LDV
269(2)
15.5.2 LDV Applied to Retinal Blood Vessels
271(4)
15.5.3 LDV Applied to Skin and Other Tissues
275(2)
15.5.4 Discussion
277(1)
15.6 TIR Spectroscopy
277(8)
15.6.1 Introduction
277(2)
15.6.2 Direct Measurement of Blood Glucose with IR Spectrosopy
279(1)
15.6.3 Transcutaneous Measurement of Glucose with IR
280(5)
15.6.4 Discussion
285(1)
15.7 Estimation of Blood Glucose from NI Measurement of Optical Rotation of the Aqueous Humor of the Eye (a Prototype System)
285(9)
15.7.1 Introduction
285(1)
15.7.2 Open-Loop Gilham Microdegree Polarimeter
286(3)
15.7.3 Dynamics and Sensitivity of the Closed-Loop Polarimeter
289(2)
15.7.4 Application of the Modified Gilham Polarimeter to the Measurement of the Optical Rotation of Aqueous Humor in a Model System
291(2)
15.7.5 Discussion
293(1)
15.8 Semi-Invasive, Continuous Measurement of Blood Glucose Using Subcutaneous Sensors
294(2)
15.8.1 Introduction
294(1)
15.8.2 Biorasis Inc. Glucowizzard Subcutaneous Continuous Glucose Monitoring
294(2)
15.9 Pulse Oximetry
296(5)
15.9.1 Introduction
296(1)
15.9.2 Pulse Oximetry Systems
297(4)
15.9.3 Discussion
301(1)
15.10 NI Measurement of Certain Biomolecules By Raman Spectroscopy
301(6)
15.10.1 Introduction
301(3)
15.10.2 Diagnostic Applications of Raman Spectroscopy
304(2)
15.10.3 Discussion
306(1)
15.11
Chapter Summary
307(2)
16 A Survey of Medical Imaging Systems 309(60)
16.1 Introduction
309(1)
16.2 X-rays
309(12)
16.2.1 Introduction
309(1)
16.2.2 Sources of Medical X-rays
309(4)
16.2.3 X-ray Detectors and Recording Media
313(5)
16.2.4 X-ray Mammography
318(3)
16.2.5 Mammography with Ultrasound
321(1)
16.3 Tomography
321(10)
16.3.1 Introduction
321(3)
16.3.2 Formation of Tomograms with the Algebraic Reconstruction Technique
324(3)
16.3.3 Use of the RT in Tomography
327(4)
16.4 Positron Emission Tomography
331(5)
16.4.1 Introduction
331(1)
16.4.2 PET Process
331(4)
16.4.3 Some PET Applications
335(1)
16.5 Magnetic Resonance Imaging
336(4)
16.5.1 Introduction
336(1)
16.5.2 MRI Physics
336(2)
16.5.3 How MRI Works
338(1)
16.5.4 MRI Contrast Agents
339(1)
16.6 Single-Photon Emission Tomography
340(8)
16.6.1 Introduction
340(1)
16.6.2 Radiochemicals Used in SPECT
341(1)
16.6.3 Scintillation Crystals Used in Nuclear Medicine
342(1)
16.6.4 Gamma Cameras and Collimators
342(2)
16.6.5 Future Trends in Nuclear Medical Imaging
344(4)
16.7 Optical Coherence Tomography
348(5)
16.7.1 Introduction
348(1)
16.7.2 How OCT Works
348(2)
16.7.3 Applications of OCT
350(3)
16.8 Ultrasound Imaging
353(8)
16.8.1 Introduction
353(1)
16.8.2 Physics of Ultrasound Propagation in Solids and Liquids
353(3)
16.8.3 Ultrasound Transducers
356(3)
16.8.4 Doppler Ultrasound Imaging
359(2)
16.9 Other Imaging Modalities
361(6)
16.9.1 Introduction
361(1)
16.9.2 LIR Thermal Imaging of Body Surfaces
361(2)
16.9.3 Microwave Imaging
363(1)
16.9.4 EIT in 2-D Imaging
364(3)
16.10
Chapter Summary
367(2)
17 Innovations in Noninvasive Instrumentation and Measurements 369(30)
17.1 Introduction
369(1)
17.2 DNA Analysis by Polymerase Chain Reaction
370(1)
17.3 DNA Sequencing with Nanopores
371(1)
17.4 Fluorescence Tests for Biomolecules: FISH and SKY
372(1)
17.5 SpectraCube System
373(3)
17.6 Analytical Microarrays
376(5)
17.6.1 Introduction
376(1)
17.6.2 Ab Microarrays
376(1)
17.6.3 Nucleic Acid Microarrays
377(2)
17.6.4 Peptide and Protein Microarrays
379(1)
17.6.5 Glycan Microarrays
380(1)
17.6.6 Lectin Microarrays
380(1)
17.7 NI Chemical Tests for Cancer Not Involving DNA
381(5)
17.7.1 Introduction
381(1)
17.7.2 Melatonin and Cancer
381(1)
17.7.3 Pteridines and Cancer: Other Chemical Tests
382(2)
17.7.4 GM Bacteria for NI tumor Detection
384(1)
17.7.5 In Vitro Magnetic Levitation of Single Cells for Cancer Detection
384(1)
17.7.6 Use of Circularly Polarized Light for NI Cancer Detection
385(1)
17.8 Minimally Invasive Sensors Using Drops of Blood
386(6)
17.8.1 Introduction
386(1)
17.8.2 Malaria Parasite Detection Using Magnetic Resonance Relaxometry of Hemozoin in Blood
386(3)
17.8.3 Colorimetric and Redox Blood Glucose Sensors
389(1)
17.8.4 Blood Clotting Time (INR) Measurement
389(1)
17.8.5 Scanning Confocal Microscopy
390(2)
17.8.6 Liquid Biopsies and the Detection of Cancer
392(1)
17.9 Blood Alcohol Concentration Estimation by Breathalyzer
392(3)
17.9.1 BAC Estimation by Measuring Transdermal Alcohol Concentration Using Wearable Sensors
394(2)
17.9.1.1 Introduction
394(1)
17.9.1.2 BACtrack Skyn
394(1)
17.10 Capsule Endoscopy
395(1)
17.11 Use of Diffuse Reflectance Imaging to Detect Oral Cancer
396(1)
17.11.1 Introduction
396(1)
17.11.2 DRI System Design and Applications
396(1)
17.12 Coregistered Photoacoustic and Ultrasound Imaging
396(1)
17.13
Chapter Summary
397(2)
18 Introduction to Noninvasive Therapies 399(26)
18.1 Introduction
399(1)
18.2 Brain Stimulation Therapies
399(4)
18.2.1 Introduction
399(1)
18.2.2 Repetitive Transcranial Magnetic Stimulation
399(2)
18.2.3 Transcranial DC Stimulation
401(1)
18.2.4 Electroconvulsive Therapy
401(2)
18.2.5 Summary
403(1)
18.3 Treatment of Osteoarthritis with US
403(1)
18.3.1 Introduction
403(1)
18.3.2 US Treatment of OA
404(1)
18.4 Radiation Therapy versus Cancers
404(1)
18.4.1 Introduction
404(1)
18.4.2 Radiation Therapy
405(1)
18.5 TTF: LF AC Electromagnetic Field Stimulation to Fight Glioblastomas
405(1)
18.6 Transcutaneous Electrical Nerve Stimulation
406(1)
18.7 Heat Therapy
407(1)
18.8 Interferential Current Therapy
408(3)
18.8.1 Introduction
408(2)
18.8.2 Applications of ICT
410(1)
18.8.3 Other forms of ICT
410(1)
18.8.4 Electrode Placement for ICT
411(1)
18.9 Electrical and Magnetic Stimulation in Bone Healing
411(4)
18.9.1 Introduction
411(1)
18.9.2 Electrical Stimulation Modalities for Bone Healing
412(1)
18.9.3 Pulsed Magnetic Stimulation for Bone Healing and Other Medical Conditions
412(3)
18.10 NI Respiratory (Pneumatic) Therapies
415(1)
18.10.1 Introduction
415(1)
18.10.2 CPAP and BPAP
416(1)
18.11 US May Help Treat AD
416(1)
18.12 Hearing Aids
417(4)
18.12.1 Introduction
417(1)
18.12.2 Human Hearing Characteristics
417(1)
18.12.3 HAs, Frequency Compensation, and Frequency FLowering Technologies
418(2)
18.12.4 Conclusions
420(1)
18.13 "Smart" Wound Dressings
421(1)
18.14 Negative-Pressure Wound Therapy
421(1)
18.15 Gene Editing with CRISPR-Cas9 and CRISPR-Cpf1 as a Prospective Therapy for Genetic Diseases
421(2)
18.15.1 Genetic Disorders
421(1)
18.15.2 Correcting Chromosome Damage with Genetically Engineered CRISPR-Cas9 and CRISPR-Cpf1 Gene Editing Tools
422(1)
18.16
Chapter Summary
423(2)
Bibliography 425(38)
Glossary 463(22)
Index 485
Professor Robert B. Northrop is an Emeritus Professor at the University of Connecticut. He was the original founding chairman of the department of biomedical engineering at U Conn. He has been an active instructor and researcher in medical instrumentation for over thirty years. He has authored 10 texts and reference works related to biomedical electronics, instrumentation, signal processing and genomics for biomedical engineers.