Atjaunināt sīkdatņu piekrišanu

Noncommutative Functional Calculus: Theory and Applications of Slice Hyperholomorphic Functions [Hardback]

  • Formāts: Hardback, 222 pages, height x width: 235x155 mm, weight: 512 g, VI, 222 p., 1 Hardback
  • Sērija : Progress in Mathematics 289
  • Izdošanas datums: 23-Mar-2011
  • Izdevniecība: Birkhauser Verlag AG
  • ISBN-10: 3034801092
  • ISBN-13: 9783034801096
Citas grāmatas par šo tēmu:
  • Hardback
  • Cena: 75,00 €
  • Grāmatu piegādes laiks ir 3-4 nedēļas, ja grāmata ir uz vietas izdevniecības noliktavā. Ja izdevējam nepieciešams publicēt jaunu tirāžu, grāmatas piegāde var aizkavēties.
  • Daudzums:
  • Ielikt grozā
  • Piegādes laiks - 4-6 nedēļas
  • Pievienot vēlmju sarakstam
  • Formāts: Hardback, 222 pages, height x width: 235x155 mm, weight: 512 g, VI, 222 p., 1 Hardback
  • Sērija : Progress in Mathematics 289
  • Izdošanas datums: 23-Mar-2011
  • Izdevniecība: Birkhauser Verlag AG
  • ISBN-10: 3034801092
  • ISBN-13: 9783034801096
Citas grāmatas par šo tēmu:
This book presents a functional calculus for n-tuples of not necessarily commuting linear operators. In particular, a functional calculus for quaternionic linear operators is developed. These calculi are based on a new theory of hyperholomorphicity for functions with values in a Clifford algebra: the so-called slice monogenic functions which are carefully described in the book. In the case of functions with values in the algebra of quaternions these functions are named slice regular functions.
 

Except for the appendix and the introduction all results are new and appear for the first time organized in a monograph. The material has been carefully prepared to be as self-contained as possible. The intended audience consists of researchers, graduate and postgraduate students interested in operator theory, spectral theory,  hypercomplex analysis, and mathematical physics.



This exposition of the new functional calculus methodology, as well as its analog for quaternionic linear operators is informed by the recently developed theory of hyperholomorphicity and is ideal for application to n-tuples of non-commuting linear operators.
1 Introduction
1(16)
1.1 Overview
1(2)
1.2 Plan of the book
3(14)
2 Slice monogenic functions
17(64)
2.1 Clifford algebras
17(6)
2.2 Slice monogenic functions: definition and properties
23(10)
2.3 Power series
33(4)
2.4 Cauchy integral formula, I
37(5)
2.5 Zeros of slice monogenic functions
42(5)
2.6 The slice monogenic product
47(6)
2.7 Slice monogenic Cauchy kernel
53(7)
2.8 Cauchy integral formula, II
60(8)
2.9 Duality Theorems
68(5)
2.10 Topological Duality Theorems
73(3)
2.11 Notes
76(5)
3 Functional calculus for n-tuples of operators
81(32)
3.1 The S-resolvent operator and the S-spectrum
82(4)
3.2 Properties of the S-spectrum
86(2)
3.3 The functional calculus
88(2)
3.4 Algebraic rules
90(3)
3.5 The spectral mapping and the S-spectral radius theorems
93(6)
3.6 Projectors
99(2)
3.7 Functional calculus for unbounded operators and algebraic properties
101(7)
3.8 Notes
108(5)
4 Quaternionic Functional Calculus
113(88)
4.1 Notation and definition of slice regular functions
113(4)
4.2 Properties of slice regular functions
117(4)
4.3 Representation Formula for slice regular functions
121(8)
4.4 The slice regular Cauchy kernel
129(5)
4.5 The Cauchy integral formula II
134(2)
4.6 Linear bounded quaternionic operators
136(2)
4.7 The S-resolvent operator series
138(3)
4.8 The S-spectrum and the S-resolvent operators
141(3)
4.9 Examples of S-spectra
144(2)
4.10 The quaternionic functional calculus
146(5)
4.11 Algebraic properties of the quaternionic functional calculus
151(2)
4.12 The S-spectral radius
153(3)
4.13 The S-spectral mapping and the composition theorems
156(3)
4.14 Bounded perturbations of the S-resolvent operator
159(7)
4.15 Linear closed quaternionic operators
166(7)
4.16 The functional calculus for unbounded operators
173(7)
4.17 An application: uniformly continuous quaternionic semigroups
180(8)
4.18 Notes
188(13)
5 Appendix: The Riesz-Dunford functional calculus
201(10)
5.1 Vector-valued functions of a complex variable
201(2)
5.2 The functional calculus for linear bounded operators
203(5)
5.3 The functional calculus for unbounded operators
208(3)
Bibliography 211(8)
Index 219