Atjaunināt sīkdatņu piekrišanu

Nonequilibrium Many-Body Theory of Quantum Systems: A Modern Introduction [Hardback]

(University of Jyväskylä, Finland), (Universitą degli Studi di Roma 'Tor Vergata')
  • Formāts: Hardback, 620 pages, height x width x depth: 253x182x32 mm, weight: 1350 g, Worked examples or Exercises; 3 Tables, black and white; 103 Line drawings, unspecified
  • Izdošanas datums: 07-Mar-2013
  • Izdevniecība: Cambridge University Press
  • ISBN-10: 0521766176
  • ISBN-13: 9780521766173
Citas grāmatas par šo tēmu:
  • Hardback
  • Cena: 115,83 €
  • Grāmatu piegādes laiks ir 3-4 nedēļas, ja grāmata ir uz vietas izdevniecības noliktavā. Ja izdevējam nepieciešams publicēt jaunu tirāžu, grāmatas piegāde var aizkavēties.
  • Daudzums:
  • Ielikt grozā
  • Piegādes laiks - 4-6 nedēļas
  • Pievienot vēlmju sarakstam
  • Formāts: Hardback, 620 pages, height x width x depth: 253x182x32 mm, weight: 1350 g, Worked examples or Exercises; 3 Tables, black and white; 103 Line drawings, unspecified
  • Izdošanas datums: 07-Mar-2013
  • Izdevniecība: Cambridge University Press
  • ISBN-10: 0521766176
  • ISBN-13: 9780521766173
Citas grāmatas par šo tēmu:
"The Green's function method is one of the most powerful and versatile formalisms in physics, and its nonequilibrium version has proved invaluable in many research fields. This book provides a unique, self-contained introduction to nonequilibrium many-body theory. Starting with basic quantum mechanics, the authors introduce the equilibrium and nonequilibrium Green's function formalisms within a unified framework called the contour formalism. The physical content of the contour Green's functions and the diagrammatic expansions are explained with a focus on the time-dependent aspect. Every result is derived step-by-step, critically discussed and then applied to different physical systems, ranging from molecules and nanostructures to metals and insulators. With an abundance of illustrative examples, this accessible book is ideal for graduate students and researchers who are interested in excited state properties of matter and nonequilibrium physics"--

A pedagogical introduction to nonequilibrium theory, time-dependent phenomena and excited state properties, for graduate students and researchers.

Papildus informācija

A pedagogical introduction to nonequilibrium theory, time-dependent phenomena and excited state properties, for graduate students and researchers.
Preface;
1. Second quantization;
2. Getting familiar with second
quantization: model Hamiltonians;
3. Time-dependent problems and equations of
motion;
4. The contour idea;
5. Many-particle Green's functions;
6.
One-particle Green's function;
7. Mean field approximations;
8. Conserving
approximations: two-particle Green's function;
9. Conserving approximations:
self-energy;
10. MBPT for the Green's function;
11. MBPT and variational
principles for the grand potential;
12. MBPT for the two-particle Green's
function;
13. Applications of MBPT to equilibrium problems;
14. Linear
response theory: preliminaries;
15. Linear response theory: many-body
formulation;
16. Applications of MBPT to nonequilibrium problems; Appendices;
Index.
Gianluca Stefanucci is Researcher at the Physics Department of the University of Rome Tor Vergata, Italy. His current research interests are in quantum transport through nanostructures and nonequilibrium open systems. Robert van Leeuwen is Professor of Physics at the University of Jyväskylä in Finland. His main areas of research are time-dependent quantum systems, many-body theory and quantum transport through nanostructures.