Atjaunināt sīkdatņu piekrišanu

Nonequilibrium Statistical Physics: Linear Irreversible Processes [Hardback]

(Professor of Physics, University Paris Diderot, `Matičre et Systčmes Complexes' (MSC) Laboratory)
  • Formāts: Hardback, 514 pages, height x width x depth: 252x177x30 mm, weight: 1141 g, 22 b/w line illustrations
  • Sērija : Oxford Graduate Texts
  • Izdošanas datums: 17-Sep-2009
  • Izdevniecība: Oxford University Press
  • ISBN-10: 0199556881
  • ISBN-13: 9780199556885
  • Hardback
  • Cena: 117,14 €
  • Grāmatu piegādes laiks ir 3-4 nedēļas, ja grāmata ir uz vietas izdevniecības noliktavā. Ja izdevējam nepieciešams publicēt jaunu tirāžu, grāmatas piegāde var aizkavēties.
  • Daudzums:
  • Ielikt grozā
  • Piegādes laiks - 4-6 nedēļas
  • Pievienot vēlmju sarakstam
  • Formāts: Hardback, 514 pages, height x width x depth: 252x177x30 mm, weight: 1141 g, 22 b/w line illustrations
  • Sērija : Oxford Graduate Texts
  • Izdošanas datums: 17-Sep-2009
  • Izdevniecība: Oxford University Press
  • ISBN-10: 0199556881
  • ISBN-13: 9780199556885
While systems at equilibrium are treated in a unified manner through the partition function formalism, the statistical physics of out-of-equilibrium systems covers a large variety of situations that are often without apparent connection. This book proposes a unified perspective on the whole set of systems near equilibrium: it brings out the profound unity of the laws which govern them and gathers a large number of results usually fragmented in the literature. The reader will find in this book a pedagogical account of the fundamental results: physical origins of irreversibility, fluctuation-dissipation theorem, Boltzmann equation, linear response, Onsager relations, transport phenomena, Langevin and Fokker-Planck equations. The book's comprehensive organisation makes it valuable both as a textbook about irreversible phenomena and as a reference book for researchers.

Recenzijas

Its strength no doubt lies in showing how a large variety of subjects close to experimental interest are connected to a basis of fundamental statistical physics... This looks like an excellent book that is likely to keep its value when fashion changes. * Henk Hilhorst, Université de Paris-Sud * An extremely thorough, complete and well written reference on all well established aspects of non equilibrium statistical physics and corresponding linear irreversible processes. The book grew out of lectures given over many years at the graduate level in Paris, and is very pedagogical, providing cases and easily accessible knowledge in well written chapters. * Hubert Saleur, University of Southern California * The book is of high quality. It covers the important theoretical points and many interesting and important applications. * Robert Mazo, University of Oregon *

Random variables and random processes
1(26)
Random variables, moments, and characteristic function
2(2)
Multivariate distributions
4(2)
Addition of random variables
6(1)
Gaussian distributions
7(2)
The central limit theorem
9(3)
Random processes
12(2)
Stationarity and ergodicity
14(2)
Random processes in physics: the example of Brownian motion
16(1)
Harmonic analysis of stationary random processes
17(2)
The Wiener---Khintchine theorem
19(8)
Appendix
An alternative derivation of the Wiener---Khintchine theorem
23(2)
Bibliography
25(1)
References
25(2)
Linear thermodynamics of irreversible processes
27(48)
A few reminders of equilibrium thermodynamics
28(1)
Description of irreversible processes: affinities and fluxes
29(3)
The local equilibrium hypothesis
32(2)
Affinities and fluxes in a continuous medium in local equilibrium
34(3)
Linear response
37(1)
A few simple examples of transport coefficients
38(4)
Curie's principle
42(1)
The reciprocity relations
43(2)
Justification of the reciprocity relations
45(3)
The minimum entropy production theorem
48(3)
Bibliography
50(1)
References
50(1)
Thermodynamic fluctuations
51(1)
The fluctuations
51(1)
Consequences of the maximum entropy principle
52(1)
Probability of a fluctuation: the Einstein formula
53(1)
Equilibrium fluctuations in a fluid of N molecules
54(5)
Bibliography
58(1)
References
58(1)
Thermoelectric effects
59(1)
Introduction
59(1)
The entropy source
60(1)
Isothermal electrical conduction
61(1)
Open-circuit thermal conduction
62(1)
The Seebeck effect
62(1)
The Peltier effect
63(2)
The Thomson effect
65(1)
An illustration of the minimum entropy production theorem
66(2)
Bibliography
67(1)
Thermodiffusion in a fluid mixture
68(1)
Introduction
68(1)
Diffusive fluxes in a binary mixture
68(1)
The entropy source
69(1)
Linear relations between fluxes and affinities
70(2)
The Soret and Dufour effects
72(3)
Bibliography
73(1)
References
73(2)
Statistical description of out-of-equilibrium systems
75(14)
The phase space distribution function
76(4)
The density operator
80(3)
Systems at equilibrium
83(1)
Evolution of the macroscopic variables: classical case
84(2)
Evolution of the macroscopic variables: quantum case
86(3)
Bibliography
88(1)
Classical systems: reduced distribution functions
89(16)
Systems of classical particles with pair interactions
90(1)
The Liouville equation
91(2)
Reduced distribution functions: the BBGKY hierarchy
93(3)
The Vlasov equation
96(1)
Gauge invariance
97(8)
Appendices
Pair interaction potentials
99(1)
Hamilton's equations for a charged particle
100(2)
Gauge invariance of the Liouville equation
102(2)
Bibliography
104(1)
The Boltzmann equation
105(30)
Statistical description of dilute classical gases
106(1)
Time and length scales
107(1)
Notations and definitions
108(1)
Evolution of the distribution function
109(1)
Binary collisions
110(3)
The Boltzmann equation
113(3)
Irreversibility
116(1)
The H-theorem
117(3)
Equilibrium distributions
120(1)
Global equilibrium
121(2)
Local equilibrium
123(3)
Bibliography
125(1)
References
125(1)
The Lorentz gas
126(1)
Gas in the presence of fixed scattering centers
126(1)
Time scales
126(1)
Collisions with the fixed scatterers
127(1)
Kinetic equation of the Lorentz gas
127(4)
Bibliography
130(1)
References
130(1)
The irreversibility paradoxes
131(1)
The paradoxes
131(1)
The time-reversal paradox
131(1)
The recurrence paradox
132(1)
Bibliography
133(2)
References
133(2)
Transport coefficients
135(24)
The relaxation time approximation
136(2)
Linearization with respect to the external perturbations
138(1)
Kinetic coefficients of a Lorentz gas
138(4)
Electrical conductivity
142(2)
Diffusion coefficient
144(4)
Bibliography
147(1)
References
147(1)
Landau damping
148(1)
Weakly coupled plasma
148(1)
The Vlasov equations for a collisionless plasma
148(3)
Conductivity and electrical permittivity of a collisionless plasma
151(3)
Longitudinal waves in a Maxwellian plasma
154(5)
Bibliography
157(2)
Prom the Boltzmann equation to the hydrodynamic equations
159(22)
The hydrodynamic regime
160(1)
Local balance equations
161(4)
The Chapman---Enskog expansion
165(3)
The zeroth-order approximation
168(1)
The first-order approximation
169(12)
Appendices
A property of the collision integral
175(1)
Newton's law and viscosity coefficient
176(4)
Bibliography
180(1)
The Bloch---Boltzmann theory of electronic transport
181(38)
The Boltzmann equation for the electron gas
182(2)
The Boltzmann equation's collision integral
184(3)
Detailed balance
187(1)
The linearized Boltzmann equation
188(1)
Electrical conductivity
189(3)
Semiclassical transport in the presence of a magnetic field
192(6)
Validity limits of the Bloch---Boltzmann theory
198(3)
Bibliography
200(1)
References
200(1)
Collision processes
201(1)
Introduction
201(1)
Electron---impurity scattering
201(6)
Electron---phonon scattering
207(5)
Bibliography
211(1)
References
211(1)
Thermoelectric coefficients
212(1)
Particle and heat fluxes
212(1)
General expression for the kinetic coefficients
213(1)
Thermal conductivity
213(2)
The Seebeck and Peltier coefficients
215(4)
Bibliography
217(2)
Master equations
219(16)
Markov processes: the Chapman---Kolmogorov equation
220(3)
Master equation for a Markovian random process
223(3)
The Pauli master equation
226(2)
The generalized master equation
228(1)
From the generalized master equation to the Pauli master equation
229(2)
Discussion
231(4)
Bibliography
233(1)
References
233(2)
Brownian motion: the Langevin model
235(42)
The Langevin model
236(2)
Response and relaxation
238(5)
Equilibrium velocity fluctuations
243(4)
Harmonic analysis of the Langevin model
247(2)
Time scales
249(4)
Bibliography
251(1)
References
251(2)
The generalized Langevin model
253(1)
The generalized Langevin equation
253(2)
Complex admittance
255(1)
Harmonic analysis of the generalized Langevin model
255(2)
An analytical model
257(3)
Bibliography
259(1)
References
259(1)
Brownian motion in a bath of oscillators
260(1)
The Caldeira---Leggett model
260(5)
Dynamics of the Ohmic free particle
265(2)
The quantum Langevin equation
267(3)
Bibliography
269(1)
References
269(1)
The Nyquist theorem
270(1)
Thermal noise in an electrical circuit
270(1)
The Nyquist theorem
270(7)
Bibliography
275(1)
References
275(2)
Brownian motion: the Fokker-Planck equation
277(24)
Evolution of the velocity distribution function
278(1)
The Kramers---Moyal expansion
279(3)
The Fokker---Planck equation
282(3)
Brownian motion and Markov processes
285(5)
Bibliography
288(1)
References
288(2)
Random walk
290(1)
The drunken walker
290(1)
Diffusion of a drunken walker on a lattice
291(1)
The diffusion equation
292(2)
Bibliography
293(1)
References
293(1)
Brownian motion: Gaussian processes
294(1)
Harmonic analysis of stationary Gaussian processes
294(1)
Gaussian Markov stationary processes
295(2)
Application to Brownian motion
297(4)
Bibliography
300(1)
References
300(1)
Linear responses and equilibrium correlations
301(40)
Linear response functions
302(1)
Generalized susceptibilities
303(3)
The Kramers---Kronig relations
306(1)
Dissipation
307(1)
Non-uniform phenomena
308(2)
Equilibrium correlation functions
310(4)
Properties of the equilibrium autocorrelation functions
314(8)
Appendix
An alternative derivation of the Kramers---Kronig relations
319(2)
Bibliography
321(1)
References
321(1)
Linear response of a damped oscillator
322(1)
General interest of the study
322(1)
The undamped oscillator
322(1)
Oscillator damped by viscous friction
323(1)
Generalized susceptibility
324(3)
The displacement response function
327(2)
Bibliography
328(1)
Electronic polarization
329(1)
Semiclassical model
329(1)
Polarization response function
330(1)
Generalized susceptibility
331(1)
Comparison with the Lorentz model
331(4)
Bibliography
334(1)
Some examples of dynamical structure factors
335(1)
The examples
335(1)
Free atom
335(2)
Atom in a harmonic potential
337(4)
Bibliography
340(1)
General linear response theory
341(48)
The object of linear response theory
342(1)
First-order evolution of the density operator
342(3)
The linear response function
345(2)
Relation with the canonical correlation function
347(1)
Generalized susceptibility
348(2)
Spectral function
350(2)
Relaxation
352(5)
Symmetries of the response and correlation functions
357(2)
Non-uniform phenomena
359(9)
Appendices
Classical linear response
361(2)
Static susceptibility of an isolated system and isothermal susceptibility
363(4)
Bibliography
367(1)
References
367(1)
Dielectric relaxation
368(1)
Dielectric permittivity and polarizability
368(3)
Microscopic polarization mechanisms
371(1)
The Debye theory of dielectric relaxation
371(3)
A microscopic model of orientational polarization
374(5)
Bibliography
378(1)
References
378(1)
Magnetic resonance
379(1)
Formulation of the problem
379(1)
Phenomenological theory
380(3)
A microscopic model
383(6)
Bibliography
388(1)
The fluctuation-dissipation theorem
389(30)
Dissipation
390(3)
Equilibrium fluctuations
393(2)
The fluctuation-dissipation theorem
395(3)
Positivity of ω χ''AA(ω)
398(1)
Static susceptibility
398(2)
Sum rules
400(4)
Bibliography
403(1)
References
403(1)
Dissipative dynamics of a harmonic oscillator
404(1)
Oscillator coupled with a thermal bath
404(1)
Dynamics of the uncoupled oscillator
404(3)
Response functions and susceptibilities of the coupled oscillator
407(2)
Analysis of χxx(ω)
409(6)
Dynamics of the weakly coupled oscillator
415(4)
Bibliography
417(1)
References
417(2)
Quantum theory of electronic transport
419(28)
The Kubo---Nakano formula
420(3)
The Kubo---Greenwood formula
423(4)
Conductivity of an electron gas in the presence of impurities
427(6)
Bibliography
431(1)
References
431(2)
Conductivity of a weakly disordered metal
433(1)
Introduction
433(1)
The Kubo---Greenwood formula
433(3)
Conductivity of a macroscopic system
436(2)
Conductance of a mesoscopic system: Landauer's approach
438(2)
Addition of quantum resistances in series: localization
440(7)
Bibliography
445(1)
References
445(2)
Thermal transport coefficients
447(34)
The indirect Kubo method
448(4)
The source of entropy and the equivalent `Hamiltonian'
452(6)
Bibliography
457(1)
References
457(1)
Diffusive light waves
458(1)
Diffusive light transport
458(1)
Diffusion coefficient of light intensity
459(3)
Diffusive wave spectroscopy
462(6)
Bibliography
467(1)
References
467(1)
Light scattering by a fluid
468(1)
Introduction
468(1)
Linearized hydrodynamic equations
468(2)
Transverse fluctuations
470(2)
Longitudinal fluctuations
472(6)
Dynamical structure factor
478(3)
Bibliography
480(1)
References
480(1)
Index 481
Noėlle Pottier is Professor of Physics at Université Paris Diderot, `Matičre et Systčmes Complexes' (MSC) laboratory.