|
1 Introduction to Adiabatic Evolution |
|
|
1 | (48) |
|
1.1 Classical Adiabatic Motion |
|
|
1 | (12) |
|
1.1.1 Classical Adiabatic Invariant |
|
|
1 | (5) |
|
1.1.2 Adiabatic Geometric Angle---Hannay Angle |
|
|
6 | (2) |
|
1.1.3 Example I: One-Dimensional Harmonic Oscillator |
|
|
8 | (1) |
|
1.1.4 Example II: Celestial Two-Body Problem |
|
|
9 | (2) |
|
1.1.5 Example IE: Foucault Pendulum |
|
|
11 | (2) |
|
1.2 Quantum Adiabatic Evolution |
|
|
13 | (20) |
|
1.2.1 Quantum Adiabatic Theorem |
|
|
13 | (5) |
|
1.2.2 Adiabatic Geometric Phase---Berry Phase |
|
|
18 | (2) |
|
1.2.3 Virtual Magnetic Monopole |
|
|
20 | (2) |
|
1.2.4 Nonadiabatic Geometric Phase---Aharonov-Anandan Phase |
|
|
22 | (2) |
|
1.2.5 Example I: Born-Oppenheimer Approximation |
|
|
24 | (1) |
|
1.2.6 Example II: Aharonov-Bohm Effect |
|
|
25 | (2) |
|
1.2.7 Example III: Adiabatic Quantum Computing |
|
|
27 | (1) |
|
1.2.8 Example IV: Geometric Quantum Computation |
|
|
28 | (2) |
|
1.2.9 Example V: Superadiabatic Quantum Driving |
|
|
30 | (3) |
|
1.3 Classical-Quantum Correspondence |
|
|
33 | (16) |
|
1.3.1 Bohr-Sommerfeld Quantization Rule |
|
|
33 | (1) |
|
1.3.2 Relation Between the Berry Phase and the Hannay Angle |
|
|
34 | (5) |
|
1.3.3 Nonadiabatic Geometric Phase and Hannay Angle in the Generalized Harmonic Oscillator |
|
|
39 | (6) |
|
|
45 | (4) |
|
2 Nonlinear Adiabatic Evolution of Quantum Systems |
|
|
49 | (24) |
|
2.1 Physical Origins of Nonlinearity |
|
|
49 | (5) |
|
2.1.1 Nonlinear Gross-Pitaevskii (GP) Equation |
|
|
49 | (2) |
|
2.1.2 Nonlinear Optical Fibers |
|
|
51 | (2) |
|
2.1.3 Nonlinear Atom-Molecule Conversion |
|
|
53 | (1) |
|
2.2 Nonlinear Adiabatic Evolution of Quantum States |
|
|
54 | (8) |
|
|
55 | (3) |
|
|
58 | (1) |
|
2.2.3 Cyclic and Quasicyclic States |
|
|
59 | (1) |
|
2.2.4 Two-Level Model Illustration |
|
|
60 | (2) |
|
2.3 Nonlinear Adiabatic Geometric Phase |
|
|
62 | (11) |
|
2.3.1 Adiabatic Parameter Expansion |
|
|
64 | (1) |
|
2.3.2 Projective Hilbert Space Description |
|
|
65 | (2) |
|
2.3.3 Nonlinear Adiabatic Geometric Phase |
|
|
67 | (1) |
|
2.3.4 Two-Mode Model Illustration |
|
|
67 | (4) |
|
|
71 | (2) |
|
3 Quantum-Classical Correspondence of an Interacting Bosonic Many-Body System |
|
|
73 | (20) |
|
3.1 Commutability Between the Semiclassical Limit and the Adiabatic Limit |
|
|
73 | (7) |
|
|
73 | (1) |
|
3.1.2 Semiclassical Limit and Adiabatic Limit |
|
|
74 | (1) |
|
|
75 | (1) |
|
3.1.4 Energy Band Structure |
|
|
76 | (3) |
|
3.1.5 Commutability Between Two Limits |
|
|
79 | (1) |
|
3.2 Quantum-Classical Correspondence of the Adiabatic Geometric Phase |
|
|
80 | (13) |
|
3.2.1 Interacting Bosonic Many-Body System |
|
|
80 | (1) |
|
3.2.2 Mean-Field Hamiltonian |
|
|
81 | (4) |
|
3.2.3 Quantum Berry Phase |
|
|
85 | (1) |
|
3.2.4 Classical Hannay Angle |
|
|
86 | (3) |
|
3.2.5 Connection Between the Berry Phase and the Hannay Angle |
|
|
89 | (3) |
|
|
92 | (1) |
|
4 Exotic Virtual Magnetic Monopoles and Fields |
|
|
93 | (22) |
|
4.1 Disk-Shaped Virtual Magnetic Field |
|
|
93 | (6) |
|
4.2 Fractional Virtual Magnetic Monopole |
|
|
99 | (6) |
|
4.3 Virtual Magnetic Monopole Chain |
|
|
105 | (10) |
|
|
112 | (3) |
|
5 Applications of Nonlinear Adiabatic Evolution |
|
|
115 | (72) |
|
5.1 Nonlinear Coherent Optical Coupler |
|
|
115 | (8) |
|
5.2 Nonlinear Landau-Zener Tunneling |
|
|
123 | (25) |
|
|
123 | (10) |
|
|
133 | (6) |
|
5.2.3 Spatially Magnetic Modulated Trap |
|
|
139 | (9) |
|
5.3 Nonlinear Rosen-Zener Tunneling |
|
|
148 | (8) |
|
5.4 Nonlinear Ramsey Interferometry |
|
|
156 | (7) |
|
5.5 Nonlinear Atom-Molecule Conversion |
|
|
163 | (13) |
|
5.5.1 Bosonic Atoms to Bosonic Molecules |
|
|
163 | (5) |
|
5.5.2 Fermionic Atoms to Bosonic Molecules |
|
|
168 | (8) |
|
5.6 Nonlinear Composite Adiabatic Passage |
|
|
176 | (11) |
|
|
182 | (5) |
Index |
|
187 | |