Atjaunināt sīkdatņu piekrišanu

E-grāmata: Nonlinear Adiabatic Evolution of Quantum Systems: Geometric Phase and Virtual Magnetic Monopole

  • Formāts: EPUB+DRM
  • Izdošanas datums: 03-Sep-2018
  • Izdevniecība: Springer Verlag, Singapore
  • Valoda: eng
  • ISBN-13: 9789811326431
  • Formāts - EPUB+DRM
  • Cena: 118,37 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: EPUB+DRM
  • Izdošanas datums: 03-Sep-2018
  • Izdevniecība: Springer Verlag, Singapore
  • Valoda: eng
  • ISBN-13: 9789811326431

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

This book systematically introduces the nonlinear adiabatic evolution theory of quantum many-body systems. The nonlinearity stems from a mean-field treatment of the interactions between particles, and the adiabatic dynamics of the system can be accurately described by the nonlinear Schrödinger equation. The key points in this book include the adiabatic condition and adiabatic invariant for nonlinear system; the adiabatic nonlinear Berry phase; and the exotic virtual magnetic field, which gives the geometric meaning of the nonlinear Berry phase. From the quantum-classical correspondence, the linear and nonlinear comparison, and the single particle and interacting many-body difference perspectives, it shows a distinct picture of adiabatic evolution theory. It also demonstrates the applications of the nonlinear adiabatic evolution theory for various physical systems. Using simple models it illustrates the basic points of the theory, which are further employed for the solution of complex problems of quantum theory for many-particle systems. The results obtained are supplemented by numerical calculations, presented as tables and figures.

Recenzijas

The book represents an almost exhaustive investigation of some very actual problems in non-linear adiabatic evolution of quantum systems. It is expected to be a very useful tool for anybody working in the area of nonlinear quantum physics, from graduate students to scientific researchers. (Alex B. Gaina, zbMATH 1405.81009, 2019)

1 Introduction to Adiabatic Evolution
1(48)
1.1 Classical Adiabatic Motion
1(12)
1.1.1 Classical Adiabatic Invariant
1(5)
1.1.2 Adiabatic Geometric Angle---Hannay Angle
6(2)
1.1.3 Example I: One-Dimensional Harmonic Oscillator
8(1)
1.1.4 Example II: Celestial Two-Body Problem
9(2)
1.1.5 Example IE: Foucault Pendulum
11(2)
1.2 Quantum Adiabatic Evolution
13(20)
1.2.1 Quantum Adiabatic Theorem
13(5)
1.2.2 Adiabatic Geometric Phase---Berry Phase
18(2)
1.2.3 Virtual Magnetic Monopole
20(2)
1.2.4 Nonadiabatic Geometric Phase---Aharonov-Anandan Phase
22(2)
1.2.5 Example I: Born-Oppenheimer Approximation
24(1)
1.2.6 Example II: Aharonov-Bohm Effect
25(2)
1.2.7 Example III: Adiabatic Quantum Computing
27(1)
1.2.8 Example IV: Geometric Quantum Computation
28(2)
1.2.9 Example V: Superadiabatic Quantum Driving
30(3)
1.3 Classical-Quantum Correspondence
33(16)
1.3.1 Bohr-Sommerfeld Quantization Rule
33(1)
1.3.2 Relation Between the Berry Phase and the Hannay Angle
34(5)
1.3.3 Nonadiabatic Geometric Phase and Hannay Angle in the Generalized Harmonic Oscillator
39(6)
References
45(4)
2 Nonlinear Adiabatic Evolution of Quantum Systems
49(24)
2.1 Physical Origins of Nonlinearity
49(5)
2.1.1 Nonlinear Gross-Pitaevskii (GP) Equation
49(2)
2.1.2 Nonlinear Optical Fibers
51(2)
2.1.3 Nonlinear Atom-Molecule Conversion
53(1)
2.2 Nonlinear Adiabatic Evolution of Quantum States
54(8)
2.2.1 General Formalism
55(3)
2.2.2 Eigenstates
58(1)
2.2.3 Cyclic and Quasicyclic States
59(1)
2.2.4 Two-Level Model Illustration
60(2)
2.3 Nonlinear Adiabatic Geometric Phase
62(11)
2.3.1 Adiabatic Parameter Expansion
64(1)
2.3.2 Projective Hilbert Space Description
65(2)
2.3.3 Nonlinear Adiabatic Geometric Phase
67(1)
2.3.4 Two-Mode Model Illustration
67(4)
References
71(2)
3 Quantum-Classical Correspondence of an Interacting Bosonic Many-Body System
73(20)
3.1 Commutability Between the Semiclassical Limit and the Adiabatic Limit
73(7)
3.1.1 Hamiltonian
73(1)
3.1.2 Semiclassical Limit and Adiabatic Limit
74(1)
3.1.3 Tunneling Rates
75(1)
3.1.4 Energy Band Structure
76(3)
3.1.5 Commutability Between Two Limits
79(1)
3.2 Quantum-Classical Correspondence of the Adiabatic Geometric Phase
80(13)
3.2.1 Interacting Bosonic Many-Body System
80(1)
3.2.2 Mean-Field Hamiltonian
81(4)
3.2.3 Quantum Berry Phase
85(1)
3.2.4 Classical Hannay Angle
86(3)
3.2.5 Connection Between the Berry Phase and the Hannay Angle
89(3)
References
92(1)
4 Exotic Virtual Magnetic Monopoles and Fields
93(22)
4.1 Disk-Shaped Virtual Magnetic Field
93(6)
4.2 Fractional Virtual Magnetic Monopole
99(6)
4.3 Virtual Magnetic Monopole Chain
105(10)
References
112(3)
5 Applications of Nonlinear Adiabatic Evolution
115(72)
5.1 Nonlinear Coherent Optical Coupler
115(8)
5.2 Nonlinear Landau-Zener Tunneling
123(25)
5.2.1 Two-Level System
123(10)
5.2.2 Three-Level System
133(6)
5.2.3 Spatially Magnetic Modulated Trap
139(9)
5.3 Nonlinear Rosen-Zener Tunneling
148(8)
5.4 Nonlinear Ramsey Interferometry
156(7)
5.5 Nonlinear Atom-Molecule Conversion
163(13)
5.5.1 Bosonic Atoms to Bosonic Molecules
163(5)
5.5.2 Fermionic Atoms to Bosonic Molecules
168(8)
5.6 Nonlinear Composite Adiabatic Passage
176(11)
References
182(5)
Index 187
Jie Liu is a professor at the Institute of Applied Physics and Computational Mathematics, Beijing. He obtained his bachelors and doctoral degrees in 1986 and 1991, both from Nanjing University. Dr. Liu has an international reputation in many interdisciplinary scientific and technical areas such as adiabatic quantum theory, cold-atom physics, strong-field physics, and laser-driven inertial confinement fusion. He has led more than 15 national research projects, including projects of the National High Technology Research and Development Program, the National Key Basic Research and Development Program, and the National Natural Science Foundation of China, authored 4 monographs, and published over 200 peer-reviewed journal articles with more than 3500 citations.  Sheng-Chang Li is an associate professor at Xian Jiaotong University, Xian. He obtained his bachelors degree in 2006 from Northwest Normal University and his doctoral degree in 2012 from the Graduate School, China Academy of Engineering Physics. He has been working on nonlinear dynamics and quantum adiabatic theory of complex systems such as cold atoms, Bose-Einstein condensation, and plasmas. He has led more than 5 scientific research projects, including projects of the Natural Science Foundation of China, the Natural Science Fundamental Research Program of Shaanxi Province of China, and the Fundamental Research Funds for the Central Universities of China. He has published over 30 peer-reviewed journal articles, which have been cited more than 300 times in total and his personal research H-index is 11. Li-Bin Fu is a professor of the Department of Physics, Graduate School of China Academy of Engineering Physics. He obtained his bachelors and doctoral degrees in 1994 and 1999, both from Lanzhou University. He was a postdoctoral scholar (1999-2001), associate professor (2001-2005), and professor (2005-2017) at the Institute of Applied Physics and Computational Mathematics, Beijing. He was an Alexander von Humboldt Scholar between 2003 and 2004 at the Max Plank Institute for Physics of Complex Systems in Germany. Dr. Fu has achieved many distinctive and well-recognized academic accomplishments in strong-field physics and in quantum physics, and published over 150 peer-reviewed journal articles.  Di-Fa Ye is an associate professor at the Institute of Applied Physics and Computational Mathematics, Beijing. He obtained his bachelors degree in 2005 from Xiamen University and his doctoral degree in 2011 from the Graduate School, China Academy of Engineering Physics. He was an Alexander von Humboldt Scholar between 2011 and 2012 at the Max Plank Institute for Nuclear Physics in Germany. His main research interest covers cold-atom physics, strong-field physics and attosecond optics. He has published 30 peer-reviewed journal articles, which have been cited over 600 times in total.