Atjaunināt sīkdatņu piekrišanu

E-grāmata: Nonlinear Control of Electric Machinery

(Center for Learning and Attention Disorders, United States)
  • Formāts - PDF+DRM
  • Cena: 77,63 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

In this initial volume of an emerging series on control engineering applications, Dawson (Clemson U.; Clemson, SC) and Burg (S.E. Huffman Corp.; Clover, SC) were motivated by "the robot control man's dilemma." They present the mathematics, system models, and experimental results of applying nonlinear control algorithms, noting that manufacturers typically overlook the motor's electrical subsystem dynamics. The first part focuses on the construction of full state feedback (FSFB), exact model knowledge, and adaptive controllers. Next, they address construction of exact model knowledge controllers that do not require FSFB. Lastly, more advanced topics are treated. Annotation c. by Book News, Inc., Portland, Or.

Recenzijas

"The series will stress applications issues, and not just the mathematics of control engineering. It will provide texts that not only contain an exposé of new and well-established techniques, but also will present detailed examples of the application of these methods to the solution of real-world problems. . . This new series will present books that draw on expertise from both the academic world and the applications domains, and will be useful not only as academically recommended course texts but also as handbooks for practitioners in many applications domains. " ---Neil Munro, Professor of Applied Control Engineering The Control Systems Centre, Department of Electrical Engineering and Electronics The University of Manchester Institute of Science and Technology Manchester, England

Preface v(12)
List of Figures
xvii
1 Mathematical Background
1(20)
1.1 Introduction
1(1)
1.2 Exact Model Knowledge Control
2(3)
1.2.1 Design Example
3(1)
1.2.2 Tracking Error Stability
4(1)
1.3 Adaptive Control
5(6)
1.3.1 Design Example
9(1)
1.3.2 Tracking Error Stability
10(1)
1.4 Additional Control Design Tools
11(8)
1.5 Summary
19(2)
2 BDC Motor (FSFB)
21(28)
2.1 Introduction
21(2)
2.2 System Model
23(2)
2.3 Control Objective
25(2)
2.4 Exact Model Knowledge Controller
27(4)
2.5 Adaptive Controller
31(5)
2.6 Reduction of Overparameterization
36(2)
2.7 Experimental Results
38(11)
2.7.1 Exact Model Knowledge Control Experiment
40(1)
2.7.2 Adaptive Control Experiment
41(5)
2.7.3 Linear Control Experiment
46(3)
3 PMS Motor (FSFB)
49(28)
3.1 Introduction
49(1)
3.2 System Model
50(2)
3.3 Control Objective
52(2)
3.4 Commutation Strategy
54(1)
3.5 Exact Model Knowledge Controller
54(5)
3.6 Adaptive Controller
59(4)
3.7 Reduction of Overparameterization
63(2)
3.8 Experimental Results
65(7)
3.8.1 Exact Model Knowledge Control Experiment
67(1)
3.8.2 Adaptive Control Experiment
67(3)
3.8.3 Linear Control Experiment
70(2)
3.9 Notes
72(5)
4 BLDC Motor (FSFB)
77(28)
4.1 Introduction
77(1)
4.2 System Model
78(1)
4.3 Control Objective
79(1)
4.4 Exact Model Knowledge Controller
80(5)
4.5 Adaptive Controller
85(5)
4.6 Reduction of Overparameterization
90(2)
4.7 Experimental Results
92(9)
4.7.1 Exact Model Knowledge Control Experiment
94(4)
4.7.2 Adaptive Control Experiment
98(1)
4.7.3 Linear Control Experiment
98(3)
4.8 Notes
101(4)
5 SR Motor (FSFB)
105(34)
5.1 Introduction
105(1)
5.2 System Model
106(1)
5.3 Control Objective
107(3)
5.4 Commutation Strategy
110(2)
5.5 Exact Model Knowledge Controller
112(5)
5.6 Adaptive Controller
117(5)
5.7 Torque Ripple
122(3)
5.8 Experimental Results
125(8)
5.8.1 Exact Model Knowledge Control Experiment
126(1)
5.8.2 Adaptive Control Experiment
126(4)
5.8.3 Linear Control Experiment
130(3)
5.9 Notes
133(6)
6 Introduction Motor (FSFB)
139(30)
6.1 Introduction
139(1)
6.2 System Model
140(1)
6.3 Control Objective
141(4)
6.3.1 Position/Velocity Tracking Objective
141(2)
6.3.2 Flux Tracking Objective
143(2)
6.4 Exact Model Knowledge Controller
145(6)
6.5 Adaptive Controller
151(8)
6.6 Simulation
159(6)
6.7 Notes
165(4)
7 BDC Motor (OFB)
169(20)
7.1 Introduction
169(1)
7.2 System Model
170(1)
7.3 Control Objective
171(1)
7.4 Observer Formulation
171(6)
7.4.1 Observation Error Dynamics
173(1)
7.4.2 Stability of the Observation Error Systems
174(3)
7.5 Voltage Control Input Design
177(5)
7.5.1 Position Tracking Error Dynamics
178(3)
7.5.2 Stability of the Position Tracking Error System
181(1)
7.6 Stability of the Composite Error Systems
182(3)
7.7 Experimental Results
185(4)
8 PMS MOTOR (OFB)
189(22)
8.1 Introduction
189(1)
8.2 System Model
190(1)
8.3 Control Objective
191(1)
8.4 Observer Formulation
191(4)
8.4.1 Observation Error Dynamics
192(1)
8.4.2 Stability of the Observation Error Systems
193(2)
8.5 Voltage Control Inputs Design
195(8)
8.5.1 Position Tracking Error Dynamics
197(1)
8.5.2 Commutation Strategy
198(1)
8.5.3 Voltage Input Controller
199(2)
8.5.4 Stability of the Position Tracking Error System
201(2)
8.6 Stability of the Composite Error System
203(3)
8.7 Experimental Results
206(2)
8.8 Notes
208(3)
9 BLDC Motor (OFB)
211(20)
9.1 Introduction
211(1)
9.2 System Model
212(1)
9.3 Control Objective
213(2)
9.4 Observer Formulation
215(3)
9.5 Voltage Control Inputs Design
218(5)
9.5.1 Position Tracking Error Dynamics
218(1)
9.5.2 Voltage Input Controller
219(3)
9.5.3 Stability of the Position Tracking Error System
222(1)
9.6 Stability of the Composite Error System
223(3)
9.7 Simulation Results
226(1)
9.8 Notes
227(4)
10 SR and BLDC Motor (PSFB)
231(26)
10.1 Introduction
231(1)
10.2 System Model
232(1)
10.3 Control Objective
233(1)
10.4 Observer Formulation
234(13)
10.4.1 Observer Definition
234(1)
10.4.2 Observer Error System
235(1)
10.4.3 Stability of the Observation Error System
235(1)
10.4.4 Voltage Control Inputs Design
236(1)
10.4.5 Commutation Strategy
236(2)
10.4.6 Position Tracking Error System
238(1)
10.4.7 Current Tracking Error System
239(3)
10.4.8 Position Tracking Error Systems Analysis
242(2)
10.4.9 Stability of the Composite Error System
244(3)
10.5 PSFB Controller for BLDC Motor
247(2)
10.5.1 BLDC Motor Model
247(1)
10.5.2 Velocity Observer for the BLDC Motor
247(1)
10.5.3 Voltage Control Inputs for the BLDC Motor
248(1)
10.6 Experimental Results
249(1)
10.6.1 SR Motor Experimental Result
249(1)
10.6.2 BLDC Motor Experimental Result
250(1)
10.7 Notes
250(7)
11 Induction Motor (PSFB-I)
257(26)
11.1 Introduction
257(1)
11.2 System Model
258(1)
11.3 Control Objective
259(1)
11.4 Nonlinear Flux Observer
260(1)
11.5 Voltage Input Design
261(3)
11.5.1 Closed-Loop Filtered Tracking Error System
261(2)
11.5.2 Analysis of the Closed-Loop Filtered Tracking Error System
263(1)
11.6 Flux Controller Development
264(5)
11.6.1 Closed-Loop Flux Tracking Error System
265(3)
11.6.2 Analysis of the Closed-Loop Flux Tracking Error System
268(1)
11.7 Selection of Desired Flux Trajectory
269(1)
11.8 Stability Analysis
270(5)
11.9 Experimental Results
275(1)
11.10 Notes
276(7)
12 Adaptive PSFB Control
283(36)
12.1 Introduction
283(1)
12.2 System Model
284(4)
12.2.1 Mechanical Subsystem Model
284(2)
12.2.2 Electrical Subsystem Models
286(2)
12.3 Control Objective
288(1)
12.4 PMS Motor Controller
289(12)
12.4.1 Pseudo-Velocity Filter
290(1)
12.4.2 Desired Torque Signal
291(4)
12.4.3 PMS Motor Voltage Input Controller
295(3)
12.4.4 Composite PMS Motor Controller Analysis
298(3)
12.5 SR Motor Controller
301(4)
12.5.1 SR Motor Desired Torque Signal
301(1)
12.5.2 SR Motor Voltage Input Controller
301(4)
12.6 BLDC Motor Controller
305(3)
12.6.1 BLDC Motor Desired Torque Signal
305(1)
12.6.2 BLDC Motor Input Voltage Controller
305(3)
12.7 Experimental Results
308(7)
12.8 Notes
315(4)
13 Sensorless Control of the SEDC
319(24)
13.1 Introduction
319(1)
13.2 System Model
320(2)
13.3 Control Objective
322(1)
13.4 Observer Formulation
323(4)
13.4.1 Observation Error Dynamics
325(1)
13.4.2 Stability of the Observation Error System
325(2)
13.5 Voltage Control Inputs
327(7)
13.5.1 Velocity Tracking Error Dynamics
328(4)
13.5.2 Stability of the Velocity Tracking Error System
332(2)
13.6 Stability of the Composite Error System
334(3)
13.7 Experimental Results
337(2)
13.8 Notes
339(4)
14 Induction Motor (PSFB-II)
343(28)
14.1 Introduction
343(1)
14.2 System Mathematical Model
344(1)
14.3 Control Objective
345(1)
14.4 Nonlinear Observers
346(5)
14.4.1 Observer Definitions
346(2)
14.4.2 Observation Error Systems
348(1)
14.4.3 Analysis of the Observation Error Systems
349(2)
14.5 Position Tracking Controller Development
351(5)
14.5.1 Position Tracking Error Systems
351(4)
14.5.2 Position Tracking Error System Analysis
355(1)
14.6 Flux Controller Development
356(4)
14.6.1 Observed Flux Tracking Error Systems
357(2)
14.6.2 Observed Flux Tracking Error Systems Analysis
359(1)
14.7 Tracking Performance Analysis
360(4)
14.8 Experimental Results
364(1)
14.9 Notes
365(6)
Appendices 371(62)
A BLDC Rotor-Fixed Transformation
371(4)
B Differentiation of gamma(dj)
375(4)
C Stator-Fixed Transformation
379(6)
D Singularity Problem
385(18)
D.1 Introduction
385(1)
D.2 Electromechanical Model
386(1)
D.3 Problem Formulation
387(8)
D.3.1 Filtered Tracking Error System
388(1)
D.3.2 Flux Tracking Error System
389(1)
D.3.3 Current Tracking Error System
390(5)
D.4 Main Result
395(2)
D.5 Experimental Results
397(1)
D.6 Conclusions
398(1)
D.7 Auxiliary Terms
398(5)
E Rotor Resistance Problem
403(30)
E.1 Introduction
403(2)
E.2 System Model and Problem Statement
405(2)
E.2.1 Mechanical Subsystem Dynamics
405(1)
E.2.2 Electrical Subsystem Dynamics
405(1)
E.2.3 Control Objective
406(1)
E.3 Observer Design
407(5)
E.3.1 Observers and Auxiliary Filters
408(1)
E.3.2 Observation Error Systems
409(2)
E.3.3 Analysis of the Observer Error Systems
411(1)
E.4 Position/Velocity Tracking Control Objective
412(5)
E.5 Flux Tracking Control Objective
417(7)
E.5.1 Composite Observer-Controller Analysis
421(2)
E.5.2 Voltage Control Input Calculation
423(1)
E.6 Main Result
424(1)
E.7 Simulation Results
425(2)
E.8 Conclusions
427(2)
E.9 Partial Derivatives Terms for XXX(d)
429(1)
E.10 Definitions of XXX(ai), XXX(bi), and XXX(c)
429(1)
E.11 Partial Derivatives Terms for u(l)
429(4)
INDEX 433