Atjaunināt sīkdatņu piekrišanu

E-grāmata: Nonlinear Pinning Control of Complex Dynamical Networks: Analysis and Applications

(Ministerio de Ciencia, Colombia.), (Univ of Naples Federico, Italy.), (City Univ, Hong Kong.), (Unidad Guadalajara, Mexico.)
  • Formāts - PDF+DRM
  • Cena: 78,88 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

This book presents two nonlinear control strategies for complex dynamical networks. First, sliding-mode control is used, and then the inverse optimal control approach is employed. For both cases, model-based is considered in Chapter 3 and Chapter 5; then, Chapter 4 and Chapter 6 are based on determining a model for the unknow system using a recurrent neural network, using on-line extended Kalman filtering for learning.

The book is organized in four sections. The first one covers mathematical preliminaries, with a brief review for complex networks, and the pinning methodology. Additionally, sliding-mode control and inverse optimal control are introduced. Neural network structures are also discussed along with a description of the high-order ones. The second section presents the analysis and simulation results for sliding-mode control for identical as well as non-identical nodes. The third section describes analysis and simulation results for inverse optimal control considering identical or non-identical nodes. Finally, the last section presents applications of these schemes, using gene regulatory networks and microgrids as examples.



The book presents two nonlinear control strategies for complex dynamical networks. First, sliding-mode control is used, and then the inverse optimal control approach is employed. This book contains mathematical analysis, simulation examples, and real applications for the proposed schemes.

I. Analyses and Preliminaries:
1. Introduction.
2. Preliminaries. II. Sliding-Mode Control:
3. Model-Based Control.
4. Neural Model. III. Optimal Control:
5. Model- based Control.
6. Neural Model. IV. Applications:
7. Pinning Control for the p53-Mdm2 Network.
8. Secondary Control of Microgrids.
Edgar N. Sanchez works at CINVESTAV-IPN, Guadalajara Campus, Mexico, as a professor of electrical engineering graduate programs.

Carlos J. Vega received D.Sc. in Electrical Engineering degree from the Center for Research and Advanced Studies of the National Polytechnic Institute (CINVESTAV-IPN), Guadalajara, Mexico in 2020. His research interests include complex networks, nonlinear control, inverse optimal control, neural networks, and power systems.

Oscar J. Suarez is a Professor of engineering programs for undergraduate and graduate programs both in Colombia and Mexico. Currently, he is a Junior Research fellow of the Ministerio de Ciencia Tecnologķa e Innovación (Minciencias) in Colombia.

Guanrong Chen has been a Chair Professor and the Founding Director of the Centre for Chaos and Complex Networks, City University of Hong Kong, Hong Kong, since 2000.