Atjaunināt sīkdatņu piekrišanu

Nonlinear Potential Theory of Degenerate Elliptic Equations [Mīkstie vāki]

  • Formāts: Paperback / softback, 416 pages, height x width x depth: 215x140x25 mm, weight: 475 g
  • Izdošanas datums: 29-Jun-2018
  • Izdevniecība: Dover Publications Inc.
  • ISBN-10: 048682425X
  • ISBN-13: 9780486824253
Citas grāmatas par šo tēmu:
  • Mīkstie vāki
  • Cena: 30,00 €
  • Grāmatu piegādes laiks ir 3-4 nedēļas, ja grāmata ir uz vietas izdevniecības noliktavā. Ja izdevējam nepieciešams publicēt jaunu tirāžu, grāmatas piegāde var aizkavēties.
  • Daudzums:
  • Ielikt grozā
  • Piegādes laiks - 4-6 nedēļas
  • Pievienot vēlmju sarakstam
  • Formāts: Paperback / softback, 416 pages, height x width x depth: 215x140x25 mm, weight: 475 g
  • Izdošanas datums: 29-Jun-2018
  • Izdevniecība: Dover Publications Inc.
  • ISBN-10: 048682425X
  • ISBN-13: 9780486824253
Citas grāmatas par šo tēmu:
A self-contained treatment appropriate for advanced undergraduate and graduate students, this volume offers a detailed development of the necessary background for its survey of the nonlinear potential theory of superharmonic functions.
Starting with the theory of weighted Sobolev spaces, the text advances to the theory of weighted variational capacity. Succeeding chapters investigate solutions and supersolutions of equations, with emphasis on refined Sobolev spaces, variational integrals, and harmonic functions. Chapter 7 defines superharmonic functions via the comparison principle, and chapters 8 through 14 form the core of the nonlinear potential theory of superharmonic functions. Topics include balayage; Perron's method, barriers, and resolutivity; polar sets; harmonic measure; fine topology; harmonic morphisms; and quasiregular mappings. The book concludes with explorations of axiomatic nonlinear potential theory and helpful appendixes.

A self-contained treatment appropriate for advanced undergraduates and graduate students, this text offers a detailed development of the necessary background for its survey of the nonlinear potential theory of superharmonic functions. 1993 edition.
Preface to the Dover Edition vii
Corrigenda viii
Introduction 1(6)
1 Weighted Sobolev spaces
7(20)
2 Capacity
27(28)
3 Supersolutions and the obstacle problem
55(32)
4 Refined Sobolev spaces
87(10)
5 Variational integrals
97(13)
6 A-harmonic functions
110(21)
7 A-superharmonic functions
131(26)
8 Balayage
157(11)
9 Perron's method, barriers, and resolutivity
168(25)
10 Polar sets
193(8)
11 A-harmonic measure
201(16)
12 Fine topology
217(19)
13 Harmonic morphisms
236(14)
14 Quasiregular mappings
250(47)
15 Ap-weights and Jacobians of quasiconformal mappings
297(20)
16 Axiomatic nonlinear potential theory
317(15)
17 Appendix I: The existence of solutions
332(4)
18 Appendix II: The John--Nirenberg lemma
336(29)
Bibliography
342(14)
List of symbols
356(4)
Index
360(5)
Epilogue
19 The John-Nirenberg lemma
365(7)
20 Admissible Weights
372(9)
21 The Riesz measure of an A-superharmonic function
381(13)
22 Generalizations
394(4)
New Bibliography 398