Atjaunināt sīkdatņu piekrišanu

E-grāmata: Nonlinear Systems Stability Analysis: Lyapunov-Based Approach

  • Formāts: 319 pages
  • Izdošanas datums: 03-Sep-2018
  • Izdevniecība: CRC Press Inc
  • ISBN-13: 9781466569294
  • Formāts - PDF+DRM
  • Cena: 131,49 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: 319 pages
  • Izdošanas datums: 03-Sep-2018
  • Izdevniecība: CRC Press Inc
  • ISBN-13: 9781466569294

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

"The dynamic properties of a physical system can be described in terms of ordinary differential, partial differential, difference equations or any combinations of these subjects. In addition, the systems could be time varying, time invariant and/or time delayed, continues or discrete systems. These equations are often nonlinear in one way or the other, and it is rarely possible to find their solutions. Numerical solutions for such nonlinear dynamic systems with the analog or digital computer are impractical. This is due to the fact that a complete solution must be carried out for every possible initial condition in the solution space. Graphical techniques which can be employed for finding the solutions of the special cases of first and second order ordinary systems, are not useful tools for other type of systems as well as higher order ordinary systems"--

The equations used to describe dynamic properties of physical systems are often nonlinear, and it is rarely possible to find their solutions. Although numerical solutions are impractical and graphical techniques are not useful for many types of systems, there are different theorems and methods that are useful regarding qualitative properties of nonlinear systems and their solutions—system stability being the most crucial property. Without stability, a system will not have value.

Nonlinear Systems Stability Analysis: Lyapunov-Based Approach introduces advanced tools for stability analysis of nonlinear systems. It presents the most recent progress in stability analysis and provides a complete review of the dynamic systems stability analysis methods using Lyapunov approaches. The author discusses standard stability techniques, highlighting their shortcomings, and also describes recent developments in stability analysis that can improve applicability of the standard methods. The text covers mostly new topics such as stability of homogonous nonlinear systems and higher order Lyapunov functions derivatives for stability analysis. It also addresses special classes of nonlinear systems including time-delayed and fuzzy systems.

Presenting new methods, this book provides a nearly complete set of methods for constructing Lyapunov functions in both autonomous and nonautonomous systems, touching on new topics that open up novel research possibilities. Gathering a body of research into one volume, this text offers information to help engineers design stable systems using practice-oriented methods and can be used for graduate courses in a range of engineering disciplines.

Preface ix
Acknowledgments xi
Chapter 1 Basic Concepts 1(10)
1.1 Mathematical Model for Nonlinear Systems
1(4)
1.1.1 Existence and Uniqueness of Solutions
4(1)
1.2 Qualitative Behavior of Second-Order Linear Time-Invariant Systems
5(6)
Chapter 2 Stability Analysis of Autonomous Systems 11(108)
2.1 System Preliminaries
11(1)
2.2 Lyapunov's Second Method for Autonomous Systems
12(4)
2.2.1 Lyapunov Function Generation for Linear Systems
15(1)
2.3 Lyapunov Function Generation for Nonlinear Autonomous Systems
16(42)
2.3.1 Aizerman's Method
19(2)
2.3.2 Lure's Method
21(4)
2.3.3 Krasovskii's Method
25(2)
2.3.4 Szego's Method
27(7)
2.3.5 Ingwerson's Method
34(5)
2.3.6 Variable Gradient Method of Schultz and Gibson
39(6)
2.3.7 Reiss-Geiss's Method
45(1)
2.3.8 Infante-Clark's Method
46(5)
2.3.9 Energy Metric of Wall and Moe
51(2)
2.3.10 Zubov's Method
53(3)
2.3.11 Leighton's Method
56(2)
2.4 Relaxed Lyapunov Stability Conditions
58(38)
2.4.1 LaSalle Invariance Principle
59(2)
2.4.2 Average Decrement of the V(x) Function
61(1)
2.4.3 Vector Lyapunov Function
62(5)
2.4.4 Higher-Order Derivatives of a Lyapunov Function Candidate
67(15)
2.4.5 Stability Analysis of Nonlinear Homogeneous Systems
82(14)
2.4.5.1 Homogeneity
82(2)
2.4.5.2 Application of Higher-Order Derivatives of Lyapunov Functions
84(4)
2.4.5.3 Polynomial Δ-Homogeneous Systems of Order k = 0
88(3)
2.4.5.4 The Δ-Homogeneous Polar Coordinate
91(2)
2.4.5.5 Numerical Examples
93(3)
2.5 New Stability Theorems
96(10)
2.5.1 Fathabadi-Nikravesh's Method
96(26)
2.5.1.1 Low-Order Systems
96(5)
2.5.1.2 Linear Systems
101(1)
2.5.1.3 Higher-Order Systems
102(4)
2.6 Lyapunov Stability Analysis of a Transformed Nonlinear System
106(10)
Endnotes
116(3)
Chapter 3 Stability Analysis of Nonautonomous Systems 119(36)
3.1 Preliminaries
119(3)
3.2 Relaxed Lyapunov Stability Conditions
122(16)
3.2.1 Average Decrement of Function
122(2)
3.2.2 Vector Lyapunov Function
124(2)
3.2.3 Higher-Order Derivatives of a Lyapunov Function Candidate
126(12)
3.3 New Stability Theorems (Fathabadi-Nikravesh Time-Varying Method)
138(5)
3.4 Application of Partial Stability Theory in Nonlinear Nonautonomous System Stability Analysis
143(12)
3.4.1 Unified Stability Theory for Nonlinear Time-Varying Systems
149(6)
Chapter 4 Stability Analysis of Time-Delayed Systems 155(32)
4.1 Preliminaries
155(4)
4.2 Stability Analysis of Linear Time-Delayed Systems
159(7)
4.2.1 Stability Analysis of Linear Time-Varying Time-Delayed Systems
160(6)
4.3 Delay-Dependent Stability Analysis of Nonlinear Time-Delayed Systems
166(21)
4.3.1 Vali-Nikravesh Method of Generating the Lyapunov-Krasovskii Functional for Delay-Dependent System Stability Analysis
167(20)
Chapter 5 An Introduction to Stability Analysis of Linguistic Fuzzy Dynamic Systems 187(52)
5.1 TSK Fuzzy Model System's Stability Analysis
187(3)
5.2 Linguistic Fuzzy Stability Analysis Using a Fuzzy Petri Net
190(9)
5.2.1 Review of a Petri Net and Fuzzy Petri Net
190(2)
5.2.2 Appropriate Models for Linguistic Stability Analysis
192(2)
5.2.2.1 The Infinite Place Model
192(1)
5.2.2.2 The BIBO Stability in the Infinite Place Model
193(1)
5.2.2.3 The Variation Model
193(1)
5.2.3 The Necessary and Sufficient Condition for Stability Analysis of a First-Order Linear System Using Variation Models
194(2)
5.2.4 Stability Criterion
196(3)
5.3 Linguistic Model Stability Analysis
199(9)
5.3.1 Definitions in Linguistic Calculus
199(2)
5.3.2 A Necessary and Sufficient Condition for Stability Analysis of a Class of Applied Mechanical Systems
201(3)
5.3.3 A Necessary and Sufficient Condition for Stability Analysis of a Class of Linguistic Fuzzy Models
204(4)
5.4 Stability Analysis of Fuzzy Relational Dynamic Systems
208(8)
5.4.1 Model Representation and Configuration
209(2)
5.4.2 Stability in an FRDS: An Analytical Glance
211(5)
5.5 Asymptotic Stability in a Sum-Prod FRDS
216(15)
5.6 Asymptotic Convergence to the Equilibrium State
231(8)
References 239(6)
Appendix A1 245(12)
Appendix A2 257(8)
Appendix A3 265(4)
Appendix A4 269(18)
Appendix A5 287(12)
Index 299
Seyyed Kamaleddin Yadavar Nikravesh, Ph.D., is a professor in the electrical engineering department at Amirkabir University of Technology. His research interests include dynamic and biomedical modeling, system stability, and system optimization. He has published five different books on electrical circuit analysis, optimal control systems, industrial control system analysis, industrial control system synthesis and design, and system stability analysis: Lyapounov-based approach. He has also published more than 180 journal and conference papers, mostly in systems modeling, and system stability analysis and synthesis, which form the main structure of his present book.