Atjaunināt sīkdatņu piekrišanu

E-grāmata: Normal Forms and Stability of Hamiltonian Systems

  • Formāts: EPUB+DRM
  • Sērija : Applied Mathematical Sciences 218
  • Izdošanas datums: 11-Aug-2023
  • Izdevniecība: Springer International Publishing AG
  • Valoda: eng
  • ISBN-13: 9783031330469
  • Formāts - EPUB+DRM
  • Cena: 59,47 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: EPUB+DRM
  • Sērija : Applied Mathematical Sciences 218
  • Izdošanas datums: 11-Aug-2023
  • Izdevniecība: Springer International Publishing AG
  • Valoda: eng
  • ISBN-13: 9783031330469

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

This book introduces the reader to the study of Hamiltonian systems, focusing on the stability of autonomous and periodic systems and expanding to topics that are usually not covered by the canonical literature in the field. It emerged from lectures and seminars given at the Federal University of Pernambuco, Brazil, known as one of the leading research centers in the theory of Hamiltonian dynamics.





This book starts with a brief review of some results of linear algebra and advanced calculus, followed by the basic theory of Hamiltonian systems. The study of normal forms of Hamiltonian systems is covered by Ch.3, while Chapters 4 and 5 treat the normalization of Hamiltonian matrices. Stability in non-linear and linear systems are topics in Chapters 6 and 7. This work finishes with a study of parametric resonance in Ch. 8. All the background needed is presented, from the Hamiltonian formulation of the laws of motion to the application of the Krein-Gelfand-Lidskii theory of stronglystable systems.





With a clear, self-contained exposition, this work is a valuable help to advanced undergraduate and graduate students, and to mathematicians and physicists doing research on this topic.

Recenzijas

The book is self-contained. This comes out in the superb presentation of the material, with plenty of examples that illustrate the concepts and the methods surveyed throughout the text. The book can be used both as a textbook for courses at the graduate level and as a reference book for researchers who need these techniques in dealing with the analysis of stability of equilibria in problems of classical mechanics. (Juan R. Pacha, Mathematical Reviews, December, 2024)





Hamiltonian systems, their stability and their normal forms are the main topics of this book. These are presented in an historical context that gives the reader a good sense of their development over time while identifying the major contributors to the theory. Authors preface does a particularly good job here identifying the origins and motivations of the ideas and describing how all the various parts concepts, methods and tools fit together. (William J. Satzer Jr., zbMATH 1533.37001, 2024)

Foreword.- Preliminaries on Advanced Calculus.- Hamiltonian Systems Theory.- Normal Forms of Hamiltonian Systems.- Spectral Decomposition of Hamiltonian Matrices.- The General Linear Normalization.- Stability of Equilibria.- Stability of Linear Hamiltonian Systems.- Parametric Resonance.- References.- Index.

Hildeberto Cabral is an Emeritus Professor at the Federal University of Pernambuco, Brazil. He did his PhD at the University of California, Berkeley (1972), after getting a Master's degree from the Institute of Pure and Applied MathematicsIMPA, Brazil. He does research on dynamical systems, focusing on Hamiltonian systems, celestial mechanics, stability of equilibria, and periodic solutions.





Lścia Brandćo Dias is an Associate Professor at the Federal University of Rondōnia, Brazil. She holds a PhD in Mathematics (2007) from the Federal University of Pernambuco, Brazil, with post-doc studies at the same university. Her research interests lie in Hamiltonian systems, differential equations, and n-body problems.