Atjaunināt sīkdatņu piekrišanu

E-grāmata: Number Theory

  • Formāts: 368 pages
  • Sērija : Graduate Studies in Mathematics
  • Izdošanas datums: 02-Jan-2015
  • Izdevniecība: American Mathematical Society
  • ISBN-13: 9781470420796
Citas grāmatas par šo tēmu:
  • Formāts - PDF+DRM
  • Cena: 91,97 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: 368 pages
  • Sērija : Graduate Studies in Mathematics
  • Izdošanas datums: 02-Jan-2015
  • Izdevniecība: American Mathematical Society
  • ISBN-13: 9781470420796
Citas grāmatas par šo tēmu:

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

Algebraic number theory is one of the most refined creations in mathematics. It has been developed by some of the leading mathematicians of this and previous centuries. The primary goal of this book is to present the essential elements of algebraic number theory, including the theory of normal extensions up through a glimpse of class field theory. Following the example set for us by Kronecker, Weber, Hilbert and Artin, algebraic functions are handled here on an equal footing with algebraic numbers. This is done on the one hand to demonstrate the analogy between number fields and function fields, which is especially clear in the case where the ground field is a finite field.On the other hand, in this way one obtains an introduction to the theory of 'higher congruences' as an important element of 'arithmetic geometry'. Early chapters discuss topics in elementary number theory, such as Minkowski's geometry of numbers, public-key cryptography and a short proof of the Prime Number Theorem, following Newman and Zagier. Next, some of the tools of algebraic number theory are introduced, such as ideals, discriminants and valuations. These results are then applied to obtain results about function fields, including a proof of the Riemann-Roch Theorem and, as an application of cyclotomic fields, a proof of the first case of Fermat's Last Theorem.There are a detailed exposition of the theory of Hecke $L$-series, following Tate, and explicit applications to number theory, such as the Generalized Riemann Hypothesis. Chapter 9 brings together the earlier material through the study of quadratic number fields. Finally, Chapter 10 gives an introduction to class field theory. The book attempts as much as possible to give simple proofs. It can be used by a beginner in algebraic number theory who wishes to see some of the true power and depth of the subject. The book is suitable for two one-semester courses, with the first four chapters serving to develop the basic material. Chapters 6 through 9 could be used on their own as a second semester course.
Preface xiii
Translator's Note xvi
Notation xvii
List of Symbols
xvii
Introduction
1(34)
Pythagorean Triples
1(2)
Pell's Equation
3(1)
Fermat's Last Theorem
4(4)
Congruences
8(3)
Public Key Cryptology
11(1)
Quadratic Residues
12(10)
Prime Numbers
22(4)
The Prime Number Theorem
26(5)
Exercises
31(4)
The Geometry of Numbers
35(30)
Binary Quadratic Forms
35(2)
Complete Decomposable Forms of Degree n
37(2)
Modules and Orders
39(4)
Complete Modules in Finite Extensions of P
43(2)
The Integers of a Quadratic Field
45(1)
Further Examples of Determining a Z-Basis for the Ring of Integers of a Number Field
46(1)
The Finiteness of the Class Number
47(1)
The Group of Units
48(2)
The Start of the Proof of Dirichlet's Unit Theorem
50(1)
The Rank of 1 (E)
51(4)
The Regulator of an Order
55(1)
The Lattice Point Theorem
55(2)
Minkowski's Geometry of Numbers
57(5)
Application to Complete Decomposable Forms
62(2)
Exercises
64(1)
Dedekind's Theory of Ideals
65(38)
Basic Definitions
66(2)
The Main Theorem of Dedekind's Theory of Ideals
68(3)
Consequences of the Main Theorem
71(2)
The Converse of the Main Theorem
73(1)
The Norm of an Ideal
74(2)
Congruences
76(2)
Localization
78(2)
The Decomposition of a Prime Ideal in a Finite Separable Extension
80(4)
The Class Group of an Algebraic Number Field
84(4)
Relative Extensions
88(5)
Geometric Interpretation
93(1)
Different and Discriminant
94(7)
Exercises
101(2)
Valuations
103(38)
Fields with Valuation
104(6)
Valuations of the Field of Rational Numbers and of a Field of Rational Functions
110(2)
Completion
112(2)
Complete Fields with Respect to a Discrete Valuation
114(7)
Extension of a Valuation of a Complete Field to a Finite Extension
121(3)
Finite Extensions of a Complete Field with a Discrete Valuation
124(5)
Complete Fields with a Discrete Valuation and Finite Residue Class Field
129(3)
Extension of the Valuation of an Arbitrary Field to a Finite Extension
132(5)
Arithmetic in the Compositum of Two Field Extensions
137(1)
Exercises
137(4)
Algebraic Functions of One Variable
141(30)
Algebraic Function Fields
142(2)
The Places of an Algebraic Function Field
144(5)
The Function Space Associated to a Divisor
149(5)
Differentials
154(4)
Extensions of the Field of Constants
158(2)
The Riemann--Roch Theorem
160(4)
Function Fields of Genus 0
164(3)
Function Fields of Genus 1
167(2)
Exercises
169(2)
Normal Extensions
171(32)
Decomposition Group and Ramification Groups
172(4)
A New Proof of Dedekind's Theorem on the Different
176(2)
Decomposition of Prime Ideals in an Intermediate Field
178(2)
Cyclotomic Fields
180(4)
The First Case of Fermat's Last Theorem
184(4)
Localization
188(2)
Upper Numeration of the Ramification Group
190(5)
Kummer Extensions
195(4)
Exercises
199(4)
L-Series
203(56)
From the Riemann ζ-Function to the Hecke L-Series
204(3)
Normalized Valuations
207(2)
Adeles
209(3)
Ideles
212(2)
Idele Class Group and Ray Class Group
214(3)
Hecke Characters
217(2)
Analysis on Local Additive Groups
219(4)
Analysis on the Adele Group
223(4)
The Multiplicative Group of a Local Field
227(3)
The Local Functional Equation
230(2)
Calculation of ρ(c) for K = R
232(2)
Calculation of ρ(c) for K = C
234(2)
Computation of the ρ-Factors for a Nonarchimedean Field
236(3)
Relations Among the ρ-Factors
239(1)
Analysis on the Idele Group
240(3)
Global Zeta Functions
243(4)
The Dedekind Zeta Function
247(4)
Hecke L-Series
251(1)
Congruence Zeta Functions
252(5)
Exercises
257(2)
Applications of Hecke L-Series
259(16)
The Decomposition of Prime Numbers in Algebraic Number Fields
259(3)
The Nonvanishing of the L-Series at s = 1
262(4)
The Distribution of Prime Ideals in an Algebraic Number Field
266(4)
The Generalized Riemann Hypothesis
270(3)
Exercises
273(2)
Quadratic Number Fields
275(40)
Quadratic Forms and Orders in Quadratic Number Fields
275(7)
The Class Number of Imaginary Quadratic Number Fields
282(3)
Continued Fractions
285(5)
Periodic Continued Fractions
290(5)
The Fundamental Unit of an Order of a Real Quadratic Number Field
295(6)
The Character of a Quadratic Number Field
301(2)
The Arithmetic Class Number Formula
303(7)
Computing the Gaussian Sum
310(3)
Exercises
313(2)
What Next?
315(10)
Absolutely Abelian Extensions
316(1)
The Class Field of the Ray Class Group
317(4)
Local Class Field Theory
321(1)
Formulation of Class Field Theory Using Ideles
322(2)
Exercises
324(1)
Appendix A. Divisibility Theory 325(16)
A.1. Divisibility in Monoids
325(3)
A.2. Principal Ideal Domains
328(2)
A.3. Euclidean Domains
330(1)
A.4. Finitely Generated Modules over a Principal Ideal Domain
331(7)
A.5. Modules over Euclidean Domains
338(2)
A.6. The Arithmetic of Polynomials over Rings
340(1)
Appendix B. Trace, Norm, Different, and Discriminant 341(4)
Appendix C. Harmonic Analysis on Locally Compact Abelian Groups 345(14)
C.1. Topological Groups
345(1)
C.2. The Pontryagin Duality Theorem
346(1)
C.3. The Haar Integral
347(3)
C.4. The Restricted Direct Product
350(6)
C.5. The Poisson Summation Formula
356(3)
References 359(4)
Index 363