Preface |
|
xii | |
|
1 Complex ecological data sets |
|
|
|
1.0 Numerical analysis of ecological data |
|
|
1 | (7) |
|
1.1 Spatial structure, spatial dependence, spatial correlation |
|
|
8 | (14) |
|
1 Origin of spatial structures |
|
|
11 | (6) |
|
2 Tests of significance in the presence of spatial correlation |
|
|
17 | (4) |
|
3 Classical sampling and spatial structure |
|
|
21 | (1) |
|
1.2 Statistical testing by permutation |
|
|
22 | (10) |
|
1 Classical tests of significance |
|
|
22 | (3) |
|
|
25 | (3) |
|
|
28 | (1) |
|
4 Remarks on permutation tests |
|
|
29 | (3) |
|
1.3 Computer programs and packages |
|
|
32 | (1) |
|
1.4 Ecological descriptors |
|
|
33 | (6) |
|
1 Mathematical types of descriptors |
|
|
34 | (3) |
|
2 Intensive, extensive, additive, and non-additive descriptors |
|
|
37 | (2) |
|
|
39 | (15) |
|
|
40 | (1) |
|
2 Nonlinear transformations |
|
|
41 | (2) |
|
|
43 | (1) |
|
4 Ranging and standardization |
|
|
43 | (2) |
|
5 Implicit transformation in association coefficients |
|
|
45 | (1) |
|
|
45 | (7) |
|
|
52 | (2) |
|
|
54 | (3) |
|
|
55 | (1) |
|
2 Accommodate algorithms to missing data |
|
|
55 | (1) |
|
3 Estimate missing values |
|
|
55 | (2) |
|
|
57 | (2) |
|
2 Matrix algebra: a summary |
|
|
|
|
59 | (1) |
|
2.1 The ecological data matrix |
|
|
60 | (3) |
|
|
63 | (1) |
|
|
64 | (5) |
|
|
69 | (2) |
|
2.5 Matrix addition and multiplication |
|
|
71 | (5) |
|
|
76 | (4) |
|
|
80 | (2) |
|
|
82 | (7) |
|
2.9 Eigenvalues and eigenvectors |
|
|
89 | (10) |
|
|
90 | (2) |
|
|
92 | (7) |
|
2.10 Some properties of eigenvalues and eigenvectors |
|
|
99 | (4) |
|
2.11 Singular value decomposition |
|
|
103 | (4) |
|
|
107 | (2) |
|
3 Dimensional analysis in ecology |
|
|
|
|
109 | (1) |
|
|
110 | (5) |
|
3.2 Fundamental principles and the Pi theorem |
|
|
115 | (15) |
|
3.3 The complete set of dimensionless products |
|
|
130 | (8) |
|
3.4 Scale factors and models |
|
|
138 | (5) |
|
4 Multidimensional quantitative data |
|
|
|
4.0 Multidimensional statistics |
|
|
143 | (1) |
|
4.1 Multidimensional variables and dispersion matrix |
|
|
144 | (7) |
|
|
151 | (6) |
|
4.3 Multinormal distribution |
|
|
157 | (8) |
|
|
165 | (6) |
|
4.5 Multiple and partial correlations |
|
|
171 | (16) |
|
1 Multiple linear correlation |
|
|
173 | (2) |
|
|
175 | (5) |
|
3 Tests of statistical significance |
|
|
180 | (2) |
|
4 Causal modelling using correlations |
|
|
182 | (5) |
|
4.6 Tests of normality and multinormality |
|
|
187 | (7) |
|
|
194 | (1) |
|
5 Multidimensional semiquantitative data |
|
|
|
5.0 Nonparametric statistics |
|
|
195 | (2) |
|
5.1 Quantitative, semiquantitative, and qualitative multivariates |
|
|
197 | (4) |
|
5.2 One-dimensional nonparametric statistics |
|
|
201 | (4) |
|
|
205 | (8) |
|
|
205 | (4) |
|
|
209 | (4) |
|
5.4 Coefficient of concordance |
|
|
213 | (5) |
|
|
214 | (2) |
|
2 Testing the significance of W |
|
|
216 | (1) |
|
3 Contributions of individual variables to Kendall's concordance |
|
|
217 | (1) |
|
|
218 | (1) |
|
6 Multidimensional qualitative data |
|
|
|
|
219 | (1) |
|
6.1 Information and entropy |
|
|
220 | (8) |
|
6.2 Two-way contingency tables |
|
|
228 | (7) |
|
6.3 Multiway contingency tables |
|
|
235 | (8) |
|
6.4 Contingency tables: correspondence |
|
|
243 | (4) |
|
|
247 | (17) |
|
|
250 | (5) |
|
|
255 | (3) |
|
3 Species diversity through space |
|
|
258 | (6) |
|
|
264 | (1) |
|
|
|
7.0 The basis for clustering and ordination |
|
|
265 | (1) |
|
|
266 | (3) |
|
7.2 Association coefficients |
|
|
269 | (4) |
|
1 Similarity, distance, and dependence coefficients |
|
|
270 | (1) |
|
2 The double-zero problem |
|
|
271 | (2) |
|
7.3 Q mode: similarity coefficients |
|
|
273 | (22) |
|
1 Symmetrical binary coefficients |
|
|
273 | (2) |
|
2 Asymmetrical binary coefficients |
|
|
275 | (3) |
|
3 Symmetrical quantitative coefficients |
|
|
278 | (6) |
|
4 Asymmetrical quantitative coefficients |
|
|
284 | (4) |
|
5 Probabilistic coefficients |
|
|
288 | (7) |
|
7.4 Q mode: distance coefficients |
|
|
295 | (18) |
|
|
299 | (11) |
|
|
310 | (3) |
|
7.5 R mode: coefficients of dependence |
|
|
313 | (7) |
|
1 Descriptors other than species abundances |
|
|
313 | (3) |
|
2 Species abundances: biological associations |
|
|
316 | (4) |
|
7.6 Choice of a coefficient |
|
|
320 | (7) |
|
7.7 Transformations for community composition data |
|
|
327 | (7) |
|
1 Transformation formulas |
|
|
328 | (4) |
|
|
332 | (2) |
|
|
334 | (1) |
|
|
334 | (3) |
|
|
|
8.0 A search for discontinuities |
|
|
337 | (1) |
|
|
338 | (3) |
|
8.2 The basic model: single linkage clustering |
|
|
341 | (5) |
|
8.3 Cophenetic matrix and ultrametric property |
|
|
346 | (1) |
|
|
346 | (1) |
|
|
347 | (1) |
|
8.4 The panoply of methods |
|
|
347 | (3) |
|
1 Sequential versus simultaneous algorithms |
|
|
347 | (1) |
|
2 Agglomeration versus division |
|
|
348 | (1) |
|
3 Monothetic versus polythetic methods |
|
|
348 | (1) |
|
4 Hierarchical versus non-hierarchical methods |
|
|
348 | (1) |
|
5 Constrained clustering methods |
|
|
349 | (1) |
|
6 Probabilistic versus non-probabilistic methods |
|
|
349 | (1) |
|
8.5 Hierarchical agglomerative clustering |
|
|
350 | (26) |
|
1 Single linkage agglomerative clustering |
|
|
350 | (1) |
|
2 Complete linkage agglomerative clustering |
|
|
350 | (1) |
|
3 Intermediate linkage clustering |
|
|
351 | (1) |
|
4 Unweighted arithmetic average clustering (UPGMA) |
|
|
352 | (3) |
|
5 Weighted arithmetic average clustering (WPGMA) |
|
|
355 | (2) |
|
6 Unweighted centroid clustering (UPGMC) |
|
|
357 | (3) |
|
7 Weighted centroid clustering (WPGMC) |
|
|
360 | (1) |
|
8 Ward's minimum variance method |
|
|
360 | (7) |
|
9 General agglomerative clustering model |
|
|
367 | (3) |
|
|
370 | (2) |
|
|
372 | (4) |
|
|
376 | (1) |
|
8.7 Hierarchical divisive clustering |
|
|
377 | (6) |
|
|
377 | (2) |
|
|
379 | (1) |
|
3 Division in ordination space |
|
|
380 | (1) |
|
|
381 | (2) |
|
8.8 Partitioning by K-means |
|
|
383 | (6) |
|
8.9 Species clustering: biological associations |
|
|
389 | (14) |
|
1 Non-hierarchical complete linkage clustering |
|
|
392 | (3) |
|
|
395 | (2) |
|
|
397 | (6) |
|
|
403 | (3) |
|
8.11 Multivariate regression trees (MRT) |
|
|
406 | (5) |
|
8.12 Clustering statistics |
|
|
411 | (4) |
|
1 Connectedness and isolation |
|
|
411 | (1) |
|
2 Cophenetic correlation and related measures |
|
|
412 | (3) |
|
|
415 | (3) |
|
8.14 Cluster representation and choice of a method |
|
|
418 | (5) |
|
|
423 | (2) |
|
9 Ordination in reduced space |
|
|
|
9.0 Projecting data sets in a few dimensions |
|
|
425 | (4) |
|
9.1 Principal component analysis (PCA) |
|
|
429 | (35) |
|
1 Computing the eigenvectors of a dispersion matrix |
|
|
431 | (1) |
|
2 Computing and representing the principal components |
|
|
432 | (2) |
|
3 Contributions of the descriptors |
|
|
434 | (9) |
|
|
443 | (2) |
|
5 Principal components of a correlation matrix |
|
|
445 | (3) |
|
6 The meaningful components |
|
|
448 | (2) |
|
7 Misuses of principal component analysis |
|
|
450 | (2) |
|
8 Ecological applications |
|
|
452 | (4) |
|
|
456 | (6) |
|
10 Metric ordination of community composition data |
|
|
462 | (2) |
|
9.2 Correspondence analysis (CA) |
|
|
464 | (28) |
|
|
466 | (5) |
|
|
471 | (5) |
|
|
476 | (1) |
|
4 Site x species data tables |
|
|
477 | (5) |
|
5 Arch effect and detrended correspondence analysis |
|
|
482 | (5) |
|
6 Ecological applications |
|
|
487 | (3) |
|
|
490 | (2) |
|
9.3 Principal coordinate analysis (PCoA) |
|
|
492 | (20) |
|
|
493 | (1) |
|
|
494 | (3) |
|
3 Rationale of the method |
|
|
497 | (3) |
|
|
500 | (6) |
|
5 Ecological applications |
|
|
506 | (5) |
|
|
511 | (1) |
|
9.4 Nonmetric multidimensional scaling (nMDS) |
|
|
512 | (7) |
|
|
519 | (2) |
|
10 Interpretation of ecological structures |
|
|
|
10.0 Ecological structures |
|
|
521 | (1) |
|
10.1 Clustering and ordination |
|
|
522 | (4) |
|
10.2 The mathematics of ecological interpretation |
|
|
526 | (10) |
|
1 Explaining ecological structures |
|
|
530 | (2) |
|
2 Forecasting ecological structures |
|
|
532 | (2) |
|
|
534 | (2) |
|
|
536 | (56) |
|
1 Simple linear regression: model I |
|
|
539 | (4) |
|
2 Simple linear regression: model II |
|
|
543 | (12) |
|
3 Multiple linear regression |
|
|
555 | (13) |
|
|
568 | (2) |
|
5 Partial linear regression and variation partitioning |
|
|
570 | (13) |
|
|
583 | (1) |
|
|
584 | (5) |
|
8 Splines and Lowess smoothing |
|
|
589 | (3) |
|
|
592 | (5) |
|
|
597 | (16) |
|
1 Two association matrices: Mantel test |
|
|
598 | (6) |
|
2 More than two association matrices |
|
|
604 | (4) |
|
|
608 | (3) |
|
|
611 | (2) |
|
10.6 The fourth-corner problem |
|
|
613 | (9) |
|
1 Comparing two qualitative variables |
|
|
614 | (2) |
|
2 Test of statistical significance |
|
|
616 | (2) |
|
|
618 | (3) |
|
4 Other types of comparisons among variables |
|
|
621 | (1) |
|
|
622 | (3) |
|
|
|
11.0 Principles of canonical analysis |
|
|
625 | (4) |
|
11.1 Redundancy analysis (RDA) |
|
|
629 | (32) |
|
|
630 | (2) |
|
2 Statistics in simple RDA |
|
|
632 | (3) |
|
3 The algebra of simple RDA |
|
|
635 | (7) |
|
4 Numerical examples, simple RDA |
|
|
642 | (4) |
|
5 RDA and CCA of community composition data |
|
|
646 | (3) |
|
|
649 | (2) |
|
7 Statistics in partial RDA |
|
|
651 | (1) |
|
8 Tests of significance in partial RDA |
|
|
651 | (2) |
|
9 Numerical example, partial RDA |
|
|
653 | (1) |
|
10 Some applications of partial RDA |
|
|
654 | (4) |
|
11 Variation partitioning by RDA |
|
|
658 | (3) |
|
11.2 Canonical correspondence analysis (CCA) |
|
|
661 | (12) |
|
1 The algebra of canonical correspondence analysis |
|
|
662 | (5) |
|
|
667 | (6) |
|
11.3 Linear discriminant analysis (LDA) |
|
|
673 | (17) |
|
1 The algebra of discriminant analysis |
|
|
676 | (6) |
|
2 Statistics in linear discriminant analysis |
|
|
682 | (1) |
|
|
683 | (7) |
|
11.4 Canonical correlation analysis (CCorA) |
|
|
690 | (6) |
|
1 The algebra of canonical correlation analysis |
|
|
691 | (3) |
|
2 Statistics in canonical correlation analysis |
|
|
694 | (1) |
|
|
694 | (2) |
|
11.5 Co-inertia (CoIA) and Procrustes (Proc) analyses |
|
|
696 | (10) |
|
1 The algebra of co-inertia analysis (CoIA) |
|
|
697 | (6) |
|
2 Symmetric Procrustes analysis (Proc) |
|
|
703 | (2) |
|
3 Canonical correlation, Procrustes, or co-inertia analysis? |
|
|
705 | (1) |
|
11.6 Canonical analysis of community composition data |
|
|
706 | (3) |
|
|
709 | (2) |
|
12 Ecological data series |
|
|
|
|
711 | (3) |
|
12.1 Characteristics of data series and research objectives |
|
|
714 | (8) |
|
12.2 Trend extraction and numerical filters |
|
|
722 | (5) |
|
12.3 Periodic variability: correlogram |
|
|
727 | (12) |
|
1 Autocovariance and autocorrelation |
|
|
728 | (7) |
|
2 Cross-covariance and cross-correlation |
|
|
735 | (4) |
|
12.4 Periodic variability: periodogram |
|
|
739 | (15) |
|
1 Periodogram of Whittaker and Robinson |
|
|
739 | (5) |
|
2 Contingency periodogram of Legendre et al. |
|
|
744 | (3) |
|
3 Periodogram of Schuster |
|
|
747 | (4) |
|
4 Periodogram of Dutilleul |
|
|
751 | (2) |
|
|
753 | (1) |
|
12.5 Periodic variability: spectral and wavelet analyses |
|
|
754 | (14) |
|
1 Series of a single variable |
|
|
754 | (5) |
|
2 Multidimensional series |
|
|
759 | (4) |
|
3 Maximum entropy spectral analysis |
|
|
763 | (3) |
|
|
766 | (2) |
|
12.6 Detection of discontinuities in multivariate series |
|
|
768 | (12) |
|
1 Ordinations in reduced space |
|
|
768 | (1) |
|
|
769 | (1) |
|
|
770 | (3) |
|
4 Time-constrained clustering by MRT |
|
|
773 | (1) |
|
5 Chronological clustering |
|
|
773 | (7) |
|
|
780 | (2) |
|
|
782 | (3) |
|
|
|
|
785 | (7) |
|
|
792 | (29) |
|
|
793 | (7) |
|
2 Interpretation of all-directional correlograms |
|
|
800 | (7) |
|
|
807 | (6) |
|
|
813 | (3) |
|
5 Spatial covariance, semi-variance, correlation, cross-correlation |
|
|
816 | (3) |
|
6 Multivariate Mantel correlogram |
|
|
819 | (2) |
|
|
821 | (13) |
|
|
822 | (7) |
|
|
829 | (4) |
|
|
833 | (1) |
|
13.3 Patches and boundaries |
|
|
834 | (15) |
|
|
834 | (5) |
|
2 Space-constrained clustering |
|
|
839 | (5) |
|
|
844 | (3) |
|
|
847 | (2) |
|
13.4 Unconstrained and constrained ordination maps |
|
|
849 | (3) |
|
13.5 Spatial modelling through canonical analysis |
|
|
852 | (5) |
|
|
857 | (2) |
|
14 Multiscale analysis: spatial eigenfunctions |
|
|
|
14.0 Introduction to multiscale analysis |
|
|
859 | (2) |
|
14.1 Distance-based Moran's eigenvector maps (dbMEM) |
|
|
861 | (20) |
|
|
862 | (2) |
|
|
864 | (5) |
|
3 Ecological applications |
|
|
869 | (8) |
|
4 Interpretation of the fractions |
|
|
877 | (4) |
|
14.2 Moran's eigenvector maps (MEM), general form |
|
|
881 | (7) |
|
1 Algorithm described through an example |
|
|
881 | (3) |
|
2 Different types of MEM eigenfunctions |
|
|
884 | (4) |
|
14.3 Asymmetric eigenvector maps (AEM) |
|
|
888 | (6) |
|
1 Algorithm described through an example |
|
|
888 | (4) |
|
2 Ecological applications |
|
|
892 | (2) |
|
14.4 Multiscale ordination (MSO) |
|
|
894 | (6) |
|
14.5 Other eigenfunction-based methods of spatial analysis |
|
|
900 | (3) |
|
|
900 | (1) |
|
2 Multiscale codependence analysis |
|
|
901 | (1) |
|
3 Estimating and controlling for spatial structure in modelling |
|
|
902 | (1) |
|
14.6 Multiscale analysis of beta diversity |
|
|
903 | (1) |
|
|
904 | (3) |
|
|
907 | (62) |
|
References to cited works |
|
|
907 | (56) |
|
|
963 | (6) |
Subject index |
|
969 | |