1 Introduction |
|
1 | (30) |
|
|
|
1 | (1) |
|
1.2 Ancient Metamaterials |
|
|
2 | (1) |
|
|
3 | (13) |
|
|
4 | (2) |
|
|
6 | (2) |
|
|
8 | (6) |
|
1.3.4 The Union of Fields |
|
|
14 | (2) |
|
|
16 | (9) |
|
1.4.1 Optical Properties of Metals |
|
|
16 | (6) |
|
|
22 | (2) |
|
|
24 | (1) |
|
|
25 | (6) |
2 An Overview of Mathematical Methods for Numerical Optimization |
|
31 | (24) |
|
|
|
31 | (1) |
|
2.2 Mathematical Optimization |
|
|
32 | (2) |
|
|
34 | (2) |
|
2.4 Algorithms Utilizing Gradient Information |
|
|
36 | (7) |
|
2.4.1 Unconstrained Nonlinear Optimization |
|
|
36 | (3) |
|
2.4.2 Constrained Nonlinear Optimization |
|
|
39 | (4) |
|
2.5 Gradient-Free Algorithms |
|
|
43 | (7) |
|
|
43 | (3) |
|
|
46 | (2) |
|
2.5.3 Stochastic Search Algorithms |
|
|
48 | (2) |
|
|
50 | (1) |
|
|
51 | (4) |
3 Optimization with Surrogate Models |
|
55 | (16) |
|
|
|
55 | (2) |
|
|
57 | (1) |
|
|
57 | (3) |
|
3.3.1 Artificial Curiosity as a Guide for Optimization |
|
|
58 | (1) |
|
|
59 | (1) |
|
3.4 Exploration-Exploitation Trade-Off |
|
|
60 | (2) |
|
3.4.1 Exploration Objective: Information Gain |
|
|
60 | (1) |
|
3.4.2 Exploitation Objective: Expected Cost Improvement |
|
|
60 | (1) |
|
3.4.3 Combining the Objectives |
|
|
60 | (2) |
|
3.5 Curiosity-driven Optimization |
|
|
62 | (3) |
|
3.5.1 Models of Expected Cost and Information Gain |
|
|
62 | (1) |
|
3.5.2 A Good Model Choice: Gaussian Processes |
|
|
62 | (1) |
|
3.5.3 Derivation of Gaussian Process Information Gain |
|
|
63 | (1) |
|
3.5.4 Curiosity-Driven Optimization with Gaussian Processes |
|
|
64 | (1) |
|
3.6 Minimal Asymptotic Requirements |
|
|
65 | (2) |
|
3.6.1 Reaching Optima at Arbitrary Distance |
|
|
65 | (1) |
|
3.6.2 Locating Optima with Arbitrary Precision |
|
|
66 | (1) |
|
3.6.3 Guaranteed to Find Global Optimum |
|
|
66 | (1) |
|
|
67 | (1) |
|
|
67 | (2) |
|
|
69 | (2) |
4 Metamaterial Design by Mesh Adaptive Direct Search |
|
71 | (26) |
|
|
|
|
|
|
|
71 | (2) |
|
4.1.1 Structuring the Optimization Problem |
|
|
72 | (1) |
|
4.2 The Mesh Adaptive Direct Search Class of Algorithms |
|
|
73 | (9) |
|
4.2.1 General Organization of the MADS Algorithm |
|
|
73 | (3) |
|
4.2.2 Handling of Constraints |
|
|
76 | (2) |
|
4.2.3 Surrogates and Models |
|
|
78 | (3) |
|
4.2.4 Convergence Analysis |
|
|
81 | (1) |
|
4.3 NOMAD: A C++ Implementation of the MADS Algorithm |
|
|
82 | (4) |
|
4.3.1 Batch and Library Modes |
|
|
83 | (1) |
|
4.3.2 Important Algorithmic Parameters |
|
|
84 | (1) |
|
|
85 | (1) |
|
4.4 Metamaterial Design Using NOMAD |
|
|
86 | (8) |
|
4.4.1 Split Ring Resonator Optimization |
|
|
86 | (3) |
|
4.4.2 Split Ring Resonator Filters |
|
|
89 | (1) |
|
4.4.3 Coupling Quantum Dots to Split-Ring Resonators |
|
|
90 | (4) |
|
|
94 | (3) |
5 Nature Inspired Optimization Techniques for Metamaterial Design |
|
97 | (50) |
|
|
|
|
|
|
|
|
97 | (2) |
|
5.2 Nature Inspired Optimization Methods |
|
|
99 | (12) |
|
|
100 | (3) |
|
5.2.2 Particle Swarm Optimization |
|
|
103 | (2) |
|
5.2.3 Covariance Matrix Adaptation Evolutionary Strategy (CMA-ES) Optimization |
|
|
105 | (6) |
|
5.3 Metamaterial Surface Optimization Examples |
|
|
111 | (11) |
|
5.3.1 Metallo-Dielectric Metamaterial Absorbers for the Infrared |
|
|
112 | (2) |
|
5.3.2 Double-Sided AMC Ground Planes for RF |
|
|
114 | (4) |
|
5.3.3 Matched Magneto-Dielectric RF Absorbers |
|
|
118 | (4) |
|
5.4 Homogenized Metamaterial Optimization Examples |
|
|
122 | (20) |
|
5.4.1 Homogenization Technique for an Isotropic Planar Slab |
|
|
123 | (1) |
|
5.4.2 Anisotrdpic Inversion Technique |
|
|
124 | (4) |
|
5.4.3 Low-Loss, Multilayer Negative Index Metamaterials for the Infrared and RF |
|
|
128 | (6) |
|
5.4.4 Wide-Angle Zero Index Metamaterials for the IR |
|
|
134 | (3) |
|
5.4.5 Dispersion Engineering Broadband Negative-Zero-Positive Index Metamaterials |
|
|
137 | (5) |
|
|
142 | (5) |
6 Objective-First Nanophotonic Design |
|
147 | (28) |
|
|
|
|
147 | (1) |
|
6.2 The Electromagnetic Wave Equation |
|
|
148 | (3) |
|
6.2.1 Physics Formulation |
|
|
148 | (1) |
|
6.2.2 Numerical Formulation |
|
|
149 | (1) |
|
|
149 | (1) |
|
|
150 | (1) |
|
6.2.5 Bi-linearity of the Wave Equation |
|
|
150 | (1) |
|
6.3 The Objective-First Design Problem |
|
|
151 | (4) |
|
|
151 | (1) |
|
|
151 | (1) |
|
6.3.3 Typical Design Formulation |
|
|
152 | (1) |
|
6.3.4 Objective-First Design Formulation |
|
|
152 | (2) |
|
|
154 | (1) |
|
6.3.6 Structure Sub-problem |
|
|
154 | (1) |
|
6.3.7 Alternating Directions |
|
|
154 | (1) |
|
6.4 Waveguide Coupler Design |
|
|
155 | (6) |
|
6.4.1 Choice of Design Objective |
|
|
156 | (1) |
|
6.4.2 Application of the Objective-First Strategy |
|
|
157 | (1) |
|
6.4.3 Coupling to a Wide, Low-Index Waveguide |
|
|
157 | (1) |
|
|
158 | (1) |
|
6.4.5 Coupling to an Air-Core Waveguide Mode |
|
|
159 | (1) |
|
6.4.6 Coupling to a Metal-Insulator-Metal and Metal Wire Plasmonic Waveguides |
|
|
159 | (2) |
|
|
161 | (3) |
|
6.5.1 Application of the Objective-First Strategy |
|
|
161 | (1) |
|
6.5.2 Anti-reflection Coating |
|
|
161 | (1) |
|
|
162 | (1) |
|
|
162 | (2) |
|
|
164 | (1) |
|
|
164 | (6) |
|
6.6.1 Application of the Objective-First Strategy |
|
|
166 | (1) |
|
6.6.2 Plasmonic Cylinder Mimic |
|
|
166 | (1) |
|
6.6.3 Diffraction-Limited Lens Mimic |
|
|
167 | (2) |
|
6.6.4 Sub-diffraction Lens Mimic |
|
|
169 | (1) |
|
6.6.5 Sub-diffraction Optical Mask |
|
|
170 | (1) |
|
|
170 | (2) |
|
6.7.1 Three-Dimensional Design |
|
|
171 | (1) |
|
|
171 | (1) |
|
|
171 | (1) |
|
|
172 | (1) |
|
|
172 | (1) |
|
|
172 | (3) |
7 Gradient Based Optimization Methods for Metamaterial Design |
|
175 | (30) |
|
|
|
|
|
|
|
|
175 | (2) |
|
7.2 Level Sets and Dynamic Implicit Surfaces |
|
|
177 | (8) |
|
7.2.1 Finding the Maximal Bandgap in Photonic Crystals |
|
|
177 | (2) |
|
7.2.2 Definition of the Level Set Function |
|
|
179 | (1) |
|
|
179 | (2) |
|
7.2.4 Normal Velocity Formulas in Photonic Crystals |
|
|
181 | (1) |
|
7.2.5 The Level Set Optimization Algorithm |
|
|
181 | (4) |
|
7.3 Eigenfunction Optimization |
|
|
185 | (18) |
|
7.3.1 Finding the Optimal Localization of Eigenfunctions |
|
|
185 | (2) |
|
7.3.2 Localization of Single Eigenmodes with Eigenvalue Constraints |
|
|
187 | (1) |
|
7.3.3 Localization of Multiple Eigenmodes |
|
|
188 | (1) |
|
|
188 | (1) |
|
|
189 | (1) |
|
7.3.6 One-Dimensional Problems Without Eigenvalue Constraints |
|
|
190 | (4) |
|
7.3.7 Two-Dimensional Laplacian Problems Without Eigenvalue Constraints |
|
|
194 | (3) |
|
7.3.8 Two-Dimensional Laplacian Problems with Eigenvalue Constraints |
|
|
197 | (2) |
|
7.3.9 Two-Dimensional Bi-Laplacian Problems Without Eigenvalue constraints |
|
|
199 | (4) |
|
|
203 | (2) |
Appendix The Interface Between Optimization and Simulation |
|
205 | |