|
|
1 | (10) |
|
1.1 Differential Equations and Numerical Methods |
|
|
1 | (1) |
|
1.2 Guidelines for the Development of Approximation Schemes |
|
|
2 | (1) |
|
1.3 Analytical and Numerical Foundations |
|
|
3 | (1) |
|
1.4 Approximation of Classical Formulations |
|
|
4 | (3) |
|
1.5 Numerical Methods for Extended Formulations |
|
|
7 | (1) |
|
1.6 Objectives and Acknowledgments |
|
|
8 | (3) |
|
Part I Analytical and Numerical Foundations |
|
|
|
|
11 | (34) |
|
2.1 Variational Model Problems |
|
|
11 | (7) |
|
2.1.1 Deflection of a Membrane |
|
|
11 | (1) |
|
|
11 | (1) |
|
2.1.3 Hyperelastic Materials |
|
|
12 | (1) |
|
|
13 | (1) |
|
|
14 | (1) |
|
|
14 | (1) |
|
|
15 | (1) |
|
2.1.8 Crystalline Phase Transitions |
|
|
15 | (1) |
|
2.1.9 Free-Discontinuity Problems |
|
|
16 | (1) |
|
2.1.10 Segmentation Models |
|
|
17 | (1) |
|
|
17 | (1) |
|
2.2 Existence of Minimizers |
|
|
18 | (11) |
|
2.2.1 The Direct Method in the Calculus of Variations |
|
|
19 | (2) |
|
|
21 | (1) |
|
2.2.3 Integral Functionals |
|
|
22 | (4) |
|
2.2.4 Existence and Properties of Minimizers |
|
|
26 | (3) |
|
|
29 | (16) |
|
2.3.1 Differentiation in Banach Spaces |
|
|
30 | (1) |
|
2.3.2 Bochner--Sobolev Spaces |
|
|
31 | (2) |
|
2.3.3 Existence Theory for Gradient Flows |
|
|
33 | (7) |
|
2.3.4 Subdifferential Flows |
|
|
40 | (3) |
|
|
43 | (2) |
|
3 FEM for Linear Problems |
|
|
45 | (40) |
|
3.1 Interpolation with Finite Elements |
|
|
45 | (10) |
|
3.1.1 Abstract Finite Elements |
|
|
45 | (1) |
|
|
46 | (3) |
|
3.1.3 Projection and Quasi-Interpolation Operators |
|
|
49 | (3) |
|
|
52 | (3) |
|
3.2 Approximation of the Poisson Problem |
|
|
55 | (8) |
|
3.2.1 Variational Formulation |
|
|
56 | (1) |
|
|
57 | (3) |
|
3.2.3 Discrete Maximum Principle |
|
|
60 | (3) |
|
3.3 Approximation of the Heat Equation |
|
|
63 | (14) |
|
3.3.1 Variational Formulation |
|
|
63 | (1) |
|
3.3.2 Semidiscrete in Time Approximation |
|
|
64 | (4) |
|
3.3.3 Semidiscrete in Space Approximation |
|
|
68 | (2) |
|
3.3.4 Fully Discrete Approximation |
|
|
70 | (2) |
|
3.3.5 Discrete Maximum Principle |
|
|
72 | (3) |
|
3.3.6 A Posteriori Error Estimate |
|
|
75 | (2) |
|
3.4 Implementation of the P1 Finite Element Method |
|
|
77 | (8) |
|
|
78 | (2) |
|
|
80 | (4) |
|
|
84 | (1) |
|
4 Concepts for Discretized Problems |
|
|
85 | (42) |
|
4.1 Convergence of Minimizers |
|
|
85 | (10) |
|
4.1.1 Failure of Convergence |
|
|
85 | (2) |
|
4.1.2 Γ-Convergence of Discretizations |
|
|
87 | (1) |
|
4.1.3 Examples of Γ-Convergent Discretizations |
|
|
88 | (4) |
|
4.1.4 Error Control for Strongly Convex Problems |
|
|
92 | (3) |
|
4.2 Approximation of Equilibrium Points |
|
|
95 | (13) |
|
4.2.1 Failure of Convergence |
|
|
95 | (1) |
|
4.2.2 Abstract Error Estimates |
|
|
96 | (6) |
|
4.2.3 Abstract Subdifferential Flow |
|
|
102 | (3) |
|
4.2.4 Weak Continuity Methods |
|
|
105 | (3) |
|
4.3 Solution of Discrete Problems |
|
|
108 | (19) |
|
4.3.1 Smooth, Unconstrained Minimization |
|
|
108 | (4) |
|
4.3.2 Smooth Constrained Minimization |
|
|
112 | (4) |
|
4.3.3 Nonsmooth Equations |
|
|
116 | (2) |
|
4.3.4 Nonsmooth, Strongly Convex Minimization |
|
|
118 | (3) |
|
|
121 | (2) |
|
|
123 | (4) |
|
Part II Approximation of Classical Formulations |
|
|
|
|
127 | (26) |
|
5.1 Analytical Properties |
|
|
127 | (10) |
|
5.1.1 Existence and Uniqueness |
|
|
127 | (2) |
|
5.1.2 Equivalent Formulations |
|
|
129 | (2) |
|
|
131 | (2) |
|
|
133 | (2) |
|
|
135 | (2) |
|
5.2 Finite Element Approximation |
|
|
137 | (6) |
|
5.2.1 Abstract Error Analysis |
|
|
137 | (2) |
|
5.2.2 Application to Pl-FEM |
|
|
139 | (1) |
|
5.2.3 A Posteriori Error Analysis |
|
|
140 | (3) |
|
5.3 Iterative Solution Methods |
|
|
143 | (10) |
|
5.3.1 Semismooth Newton Iteration |
|
|
143 | (3) |
|
5.3.2 Global Primal-Dual Method |
|
|
146 | (6) |
|
|
152 | (1) |
|
6 The Allen-Calm Equation |
|
|
153 | (30) |
|
6.1 Analytical Properties |
|
|
153 | (14) |
|
6.1.1 Existence and Regularity |
|
|
154 | (2) |
|
6.1.2 Stability Estimates |
|
|
156 | (7) |
|
6.1.3 Mean Curvature Flow |
|
|
163 | (2) |
|
6.1.4 Topological Changes |
|
|
165 | (1) |
|
|
166 | (1) |
|
|
167 | (7) |
|
|
167 | (3) |
|
6.2.2 A Priori Error Analysis |
|
|
170 | (4) |
|
6.3 Practical Realization |
|
|
174 | (9) |
|
6.3.1 Time-Stepping Schemes |
|
|
175 | (3) |
|
6.3.2 Computation of the Eigenvalue |
|
|
178 | (2) |
|
|
180 | (2) |
|
|
182 | (1) |
|
|
183 | (34) |
|
7.1 Analytical Properties |
|
|
183 | (6) |
|
7.1.1 Existence and Nonuniqueness |
|
|
183 | (2) |
|
7.1.2 Euler--Lagrange Equations and Nonregularity |
|
|
185 | (1) |
|
|
186 | (2) |
|
7.1.4 Harmonic Map Heat Flow |
|
|
188 | (1) |
|
7.2 Numerical Approximation |
|
|
189 | (12) |
|
7.2.1 Discrete Harmonic Maps |
|
|
189 | (4) |
|
7.2.2 Iterative Computation |
|
|
193 | (3) |
|
7.2.3 Projection-Free Iteration |
|
|
196 | (3) |
|
7.2.4 Other Target Manifolds |
|
|
199 | (1) |
|
7.2.5 Practical Realization |
|
|
200 | (1) |
|
7.3 Approximation of Constrained Evolution Problems |
|
|
201 | (16) |
|
7.3.1 Harmonic Map Heat Flow |
|
|
201 | (2) |
|
7.3.2 Semi-implicit, Linear Schemes |
|
|
203 | (6) |
|
7.3.3 Constraint Preservation |
|
|
209 | (3) |
|
7.3.4 Approximation of Wave Maps |
|
|
212 | (3) |
|
|
215 | (2) |
|
|
217 | (44) |
|
8.1 Mathematical Modeling |
|
|
217 | (9) |
|
|
217 | (2) |
|
8.1.2 Relations to Hyperelasticity |
|
|
219 | (3) |
|
8.1.3 Relations to Linear Elasticity |
|
|
222 | (2) |
|
8.1.4 Properties of Isometries |
|
|
224 | (2) |
|
8.2 Approximaton of Linear Bending Models |
|
|
226 | (8) |
|
8.2.1 Discrete Kirchhoff Triangles |
|
|
226 | (4) |
|
|
230 | (2) |
|
8.2.3 Reissner--Mindlin Plate |
|
|
232 | (2) |
|
8.3 Approximation of the Nonlinear Kirchhoff Model |
|
|
234 | (5) |
|
|
234 | (2) |
|
8.3.2 Iterative Minimization |
|
|
236 | (1) |
|
|
237 | (2) |
|
|
239 | (22) |
|
8.4.1 Tangential Differentiation and Curvature |
|
|
239 | (5) |
|
|
244 | (5) |
|
8.4.3 Variation of the Willmore Functional |
|
|
249 | (1) |
|
8.4.4 Discretization of the Laplace--Beltrami Operator |
|
|
250 | (1) |
|
8.4.5 A Numerical Scheme for the Willmore Flow |
|
|
251 | (6) |
|
|
257 | (4) |
|
Part III Methods for Extended Formulations |
|
|
|
9 Nonconvexity and Microstructure |
|
|
261 | (36) |
|
9.1 Analytical Properties |
|
|
261 | (8) |
|
9.1.1 A Scalar Model Problem |
|
|
262 | (4) |
|
9.1.2 General Relaxation Result |
|
|
266 | (1) |
|
9.1.3 Statistical Description of Oscillations |
|
|
267 | (2) |
|
9.2 Direct and Relaxed Numerical Minimization |
|
|
269 | (13) |
|
|
269 | (3) |
|
|
272 | (3) |
|
9.2.3 Failure of Direct Minimization |
|
|
275 | (2) |
|
9.2.4 Approximation of the Relaxed Problem |
|
|
277 | (3) |
|
9.2.5 Iterative Minimization |
|
|
280 | (2) |
|
9.3 Approximation of Semi-convex Envelopes |
|
|
282 | (15) |
|
9.3.1 Upper and Lower Bounds for Wqc |
|
|
282 | (3) |
|
9.3.2 Approximation of Wpc |
|
|
285 | (3) |
|
9.3.3 Adaptive Computation of Wpc/δr |
|
|
288 | (2) |
|
9.3.4 Approximation of Wrc |
|
|
290 | (5) |
|
|
295 | (2) |
|
|
297 | (36) |
|
10.1 Functions of Bounded Variation |
|
|
297 | (10) |
|
10.1.1 Derivatives of Discontinuous Functions |
|
|
297 | (3) |
|
10.1.2 Properties of BV(ω) |
|
|
300 | (3) |
|
10.1.3 A Variational Model Problem on BV(ω) |
|
|
303 | (4) |
|
10.2 Numerical Approximation |
|
|
307 | (18) |
|
10.2.1 W1, 1 Conforming Approximation |
|
|
307 | (4) |
|
10.2.2 Piecewise Constant Approximation |
|
|
311 | (2) |
|
10.2.3 Iterative Solution |
|
|
313 | (4) |
|
|
317 | (1) |
|
10.2.5 A Posteriori Error Control |
|
|
317 | (3) |
|
10.2.6 Regularized Minimization |
|
|
320 | (1) |
|
10.2.7 Total Variation Flow |
|
|
321 | (4) |
|
|
325 | (8) |
|
10.3.1 The Mumford--Shah Functional |
|
|
325 | (2) |
|
10.3.2 Regularization of I'(μ) |
|
|
327 | (1) |
|
10.3.3 Numerical Approximation of ATε |
|
|
328 | (1) |
|
10.3.4 The Perona--Malik Equation |
|
|
329 | (3) |
|
|
332 | (1) |
|
|
333 | (32) |
|
11.1 Modeling and Analytical Properties |
|
|
333 | (9) |
|
11.1.1 One-Dimensional Plastic Effects |
|
|
333 | (1) |
|
11.1.2 Hypotheses of Multi-dimensional Elastoplasticity |
|
|
334 | (2) |
|
11.1.3 Mathematical Model |
|
|
336 | (1) |
|
11.1.4 Flow Rules and Coercivity |
|
|
337 | (3) |
|
11.1.5 Equivalent Formulations and Existence |
|
|
340 | (2) |
|
11.2 Approximation of Rate-Independent Evolutions |
|
|
342 | (10) |
|
11.2.1 Time-Incremental Minimization |
|
|
343 | (3) |
|
11.2.2 Discretization in Space |
|
|
346 | (2) |
|
11.2.3 Fully Discrete Approximation |
|
|
348 | (2) |
|
11.2.4 A Posteriori Error Control |
|
|
350 | (2) |
|
|
352 | (13) |
|
11.3.1 Solution of the Discretized Flow Rule |
|
|
352 | (4) |
|
11.3.2 Newton Method for Nonlinear Elasticity |
|
|
356 | (2) |
|
11.3.3 Implementation of Elastoplasticity |
|
|
358 | (5) |
|
|
363 | (2) |
Appendix A Auxiliary Routines |
|
365 | (20) |
Appendix B Frequently Used Notation |
|
385 | (6) |
Index |
|
391 | |